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1 Introduction

Many interesting types of objects in algebraic geometry are parametrized in a
natural way by geometric objects, called “moduli schemes” or “moduli spaces”.
Here we are interested in the case of smooth, proper curves of genus g. For these
we have a notion of “coarse moduli scheme”, usually denoted Mg, which does not
have the good properties that a “fine moduli scheme” would have. For example,
to a k-point of Mg one cannot always associate a curve defined over k, but rather
a curve defined over ksep and isomorphic to its Galois conjugates. Hence, M0(R)
consists of only one point although there exists more than one isomorphism class
of curves of genus zero defined over R. For instance, the conic V (x2+y2+z2) ⊂ P2

R
is not isomorphic to P1

R.
On the other hand, by definition, the k-points of a fine moduli scheme corre-

spond bijectively and functorially to (isomorphism classes of) objects defined over
k. However, it turns out there cannot exist a fine moduli scheme for smooth curves.
This happens more in general when the objects we consider have non-trivial auto-
morphisms, as in the case of curves. Nonetheless, if we enlarge the category where
we would like our moduli space to live (to the point where it is not a category any-
more, but a 2-category), and introduce stacks, we can still find objects enjoying all
the properties that we expect from a fine moduli space. The downside of stacks is
that geometric intuition often breaks down when working with them (for example,
they can have negative dimension). In fact, they are not even topological spaces.
Among their advantages, we count the fact that they provide an optimal setting
where to work with moduli problems, and that in the 2-category of stacks there is
a good notion of quotient by an action of a smooth algebraic group.

2 Non-existence of a fine moduli scheme

We start by giving a precise definition of the objects in which we are interested.

Definition 2.1. Let S be a scheme and g a non-negative integer. We call a
morphism of schemes C → S a curve if it is proper, smooth, and all geometric
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fibres are connected schemes of dimension 1. We say that C → S has genus g if
all the geometric fibres have genus g.

If the scheme S is the spectrum of a field, we recover the usual notion of curve
over a field. When S is a more general scheme, we can interpret C → S as a family
of curves parametrized by S. We point out that the smoothness condition implies
that C → S is flat morphism. This ensures that the fibres of the family vary
well (for example, their genus is automatically locally constant on S). In fact, the
flatness condition is usually imposed in all kinds of moduli problems when defining
families of objects.

We investigate whether a “fine moduli scheme” for smooth curves of genus g
can exist. Consider the functor

Fg : Schopp → Sets

S 7→ {Curves C → S of genus g}/ ∼=
T → S 7→ [C → S] 7→ [C ×S T → T ]

Definition 2.2. A fine moduli scheme for Fg is a couple (Mg, ϕ) of a schemeMg

and an isomorphism of functors

ϕ : Hom( ,Mg)→ Fg

A nice consequence of the existence of a fine moduli scheme would be that we
would obtain a distinguished curve C →Mg in Fg(Mg) corresponding via ϕ to the
identityMg →Mg, with the property that every curve C → S arises as pullback
of C → Mg via the corresponding map S → Mg. One calls the curve C → Mg,
the universal curve of genus g.

However, the functor Fg is not representable. In fact, it is not even a Zariski-
sheaf, hence a scheme Mg satisfying Definition 2.2 cannot exist. In the following
examples we show why.

Example 2.3. Let E be (the scheme underlying) an elliptic curve over a field k,
and let E

σ−→ E be a non-trivial automorphism. Consider two copies Y → P1
k and

Z → P1
k of the constant family E ×k P1

k → P1
k. Now glue the two base P1

k’s at the
point 0 and at the point ∞, and call S the resulting scheme. Next glue the fibres
Y0 = E and Z0 = E via the identity, and the fibres Y∞ = E and Z∞ = E via
the automorphism σ. We obtain a curve f : X → S,. Compare it to the constant
family g : E ×k S → S. The two families are not isomorphic, but they become
isomorphic when restricted to both of the covering open subschemes S \ {0} and
S \ {∞} of S. So we see that Fg is not a Zariski sheaf.

Example 2.4. The set F0(SpecC) has only one element, corresponding to the
isomorphism class of P1

C. The set F0(SpecR) has more than one element, since
there exist genus zero curves with no R-points (such as the conic V (x2 +y2 +z2) ⊂
P2
R). however, if F0 were representable byM0, there would have to be an injection
M0(R) ↪→M0(C).

The examples show that the moduli functor Fg is not representable. As sug-
gested by Example 2.3, the obstruction to its representability lies in the existence
of non-trivial automorphisms of curves, which are forgotten by the functor Fg. To
remedy to this problem, we need to keep track of isomorphisms of curves, so the
first thing to do is to try and redefine the functor Fg so that it takes values in
categories rather than in sets.
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3 The category fibered in groupoids Mg → Sch

Definition 3.1. Fix a non-negative integer g. We let Mg be the following cate-
gory:

• its objects are couples (S,C → S) with S a scheme and C → S a curve of
genus g.

• its morphisms (S,C → S)→ (T,D → T ) correspond to cartesian diagrams

D //

��

T

��
C // S

The category Mg is naturally endowed with a forgetful functor p :Mg → Sch,
associating to an object (S,C → S) the base scheme S over which the curve C is
defined, and to an arrow the right vertical map in the cartesian diagram above. We
can now start to make sense of how to interpret Mg as a ”functor of categories”:

Definition 3.2. Let S be an object of Sch. The categoryMg(S) is the subcategory
of Mg defined in the following way:

• its objects are the objects x of Mg such that p(x) = S, namely those of the
form (S,C → S).

• its morphisms are the morphisms f in Mg such that p(f) = idS

We call Mg(S) the fiber category of Mg over S.

A morphism (S,C) → (S,C ′) in Mg(S) is nothing else but the datum of an
isomorphism of S-schemes C ′ → C. Therefore all arrows in the fiber category
Mg(S) are isomorphisms. A category with such a property is called a groupoid.
We say that Mg → Sch is a category fibered in groupoids.

Definition 3.3. A category fibered in groupoids over Sch is a category X together
with a functor p : X → Sch satisfying the following properties:

1. For every morphism of schemes T → S and object x of X over S, there exists
an object y of X completing the diagram

y //

��

x

��
T // S

2. For all diagrams

x

��

  ''y //

��

z

��

S

�� ''
T // U
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there exists a unique arrow x→ y over S → T filling in the diagram.

For all schemes S we write X (S) for the fiber category of objects of X over S,
with morphisms lying over the identity of S.

Remark 3.4. Property 1) is about existence of pullbacks, whereas property 2)
implies that pullbacks are unique up to unique isomorphism, and also that the
fiber categories X (S) are groupoids.

To every functor F : Schopp → Sets we can associate a category fibered in
groupoids XF → Sch. Indeed, to a set one can always associate a category with
objects the elements of the set and with only the identities as arrows. So for every
scheme T we ask that the fiber category XF (T ) be the category associated to the
set F (T ). We give a more precise definition.

Definition 3.5. Let F : Schopp → Sets. We let XF be the category with:

• as objects, pairs (S, x) with S a scheme and x ∈ F (S);

• as arrows (S, x) → (T, y), morphisms of schemes f : S → T such that
F (f)(y) = x.

As a particular case of this construction, one can see any scheme S as a functor
via the Yoneda embedding and hence as a category fibered in groupoids XS over
Sch. Its objects are couples (T, T → S) of a scheme T and a morphism T → S,
its arrows (T, T → S)→ (U,U → S) are S-morphisms T → U .

Categories fibered in groupoids over Sch form a 2-category, which we call CFG.
Objects are categories fibered in groupoids over Sch, 1-arrows (p : X → Sch) →
(q : Y → Sch) are functors d : X → Y such that the equality of functors q ◦ d = p
holds, and 2-arrows are natural transformations of 1-arrows.

We mention the following 2-categorical version of Yoneda’s lemma: for every
scheme S and category fibered in groupoids Y → Sch there is an equivalence of
categories

HomCFG(XS,Y) ∼= Y(S).

Given a functor d : XS → Y , we associate to it the object d(S, S
id−→ S) of Y(S).

When plugging inMg in place of Y , we recover the correspondence between curves
over S and maps from a scheme S toMg, this time under the form of an equivalence
of categories rather than a bijection of sets.

4 Mg is a stack if g 6= 1

So far we have mostly done “abstract nonsense”. The step from categories fibered
in groupoids to stacks is where geometry finally comes in, and may be interpreted as
the step from “functors, or presheaves, with values in categories”, to “sheaves with
values in categories”. Indeed, that Mg is a stack means that one can reconstruct
morphisms and objects of Mg from compatible local data, just as for a sheaf it
is possible to reconstruct global sections from compatible local sections. To make
sense of this sort of statements, we have to fix a Grothendieck topology on Sch.
We choose the fppf-topology.

So let’s go back to the category fibred in groupoids Mg → Sch. Proposition
4.1 and Theorem 4.3 prove that Mg is an fppf-stack for g 6= 1.
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Proposition 4.1. Let S be a scheme and write (abusively) C,C ′ to denote two
objects of Mg(S). Consider the functor 1

IsomS(C,C ′) : (Sch /S)opp → Sets

T 7→ IsomT (CT , C
′
T )

Then IsomMg
(C,C ′) is a sheaf for the fppf topology.

Proof. Every S-scheme is a sheaf for the fppf topology on Sch /S (Theorem 2.55,
[FGA]), hence the functor T 7→ HomS(T,C ′) is a sheaf. It follows that the functor
HomS(C,C ′) is a sheaf, using that for every fppf-cover {Ui → T} the pullback
{CUi

→ CT} is also an fppf-cover. To conclude we observe that the property of
being an isomorphism is fppf-local.

This simply means that given two curves C,C ′ over a scheme S, an fppf-cover
{Si → S}i∈I and Si-maps ϕi : C ×S Si → C ′ ×S Si that agree on the intersections
Si ×S Sj, we are able to recover a unique global map ϕ : C → C ′ with ϕ|Si

= ϕi
for all i ∈ I.

In order to glue objects, the situation is somewhat more involved: suppose we
have a cover of a scheme {Si → S}, and objects Ci → Si. In order to glue them
to a global object C → S, we need, first of all, isomorphisms on the intersections
ϕij : (Ci)|Sj

→ (Cj)|Si
. Moreover these isomorphisms need to be compatible on

triple intersections. It turns out that from these data one can recover a curve
C → S only in the case of (non-negative) genus unequal to 1.

Definition 4.2. Let {Si → S}i∈I be an fppf-cover. For each i ∈ I let fi : Ci → Si
be an object of Mg(Si), and let

ϕij : (Ci)|Si×SSj
→ (Cj)|Si×SSj

be isomorphisms of Si ×S Sj-schemes, for i, j ∈ I. Suppose that for all i, j, k, we
have on Si ×S Sj ×S Sk

ϕjk ◦ ϕij = ϕik.

Then the set {(fi, ϕi,j}i,j∈I is called a fppf-descent datum for Mg relative to
the cover {Si → S}. We say that {(fi, ϕi,j)}i,j∈I is effective if there exists a curve
f : C → S with isomorphisms αi : Ci → C|Si

for all i ∈ I such that for all i, j ∈ I
the diagrams

Ci|Si×Sj

ϕij //

αi

��

Cj |Si×Sj

αj

��
C|Si×Sj

id // C|Si×Sj

commute.

Theorem 4.3. If g 6= 1, all fppf-descent data for Mg are effective.

To prove Theorem 4.3, we will make heavy use of effectiveness of fppf-descent
for quasi-coherent sheaves, which we will not prove.

1that this is a functor follows from the fact that for any map U → T of S-schemes,
(C ×S T )×T U and C ×S U are naturally isomorphic.
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Fact 4.4 ([S],TAG 023T or Theorem 2.2 [Z] ). The category fibered in groupoids
QCoh → Sch, whose objects are pairs (T,F) of a scheme T and a quasi-coherent
sheaf F on it, satisfies the analogous of Proposition 4.1 and Theorem 4.3. In
other words, every fppf-descent datum of quasi-coherent sheaves is effective, and
for every two quasi-coherent sheaves F and G on T , the functor IsomT (F ,G) is a
fppf-sheaf.

Proof of Theorem 4.3. If the cover {Si → S} is a Zariski cover, then the statement
is the content of Exercise 2.12 pag, 80 [H]. Given this, we show that we can
reduce to checking effectiveness of descent for covers given by one faithfully flat
map SpecB → SpecA of finite presentation. The argument is the following: if
{Si → S} is an fppf-cover, so is T =

⋃
i Si → S; the scheme S has a Zariski cover

by affine opens, so we reduce to the case of S affine. We can cover T with affine
opens {Vi}i∈I , whose images Ui in S are open because the map T → S is faithfully
flat of finite presentation, hence open. Then a finite subcover {Ui}i∈F , F ⊆ I of
the Ui covers S, by quasi-compactness of S. Hence the finite set {Vi}i∈F covers
T . The disjoint union S ′ := ti∈FVi is affine, and the map S ′ → S is a faithfully
flat cover, so we have reduced to the case that we wanted. Moreover the descent
datum on {Si → S} induces a descent datum on S ′ → S.

Now let f : C ′ → S ′ be a genus g 6= 1 curve, and ϕ : p∗1C
′ → p∗2C

′ an
isomorphism satisfying the cocycle condition, where p1 and p2 are the two maps
S ′ ×S S ′ → S ′. Define the locally-free sheaf F on C ′ to be:

• Ω1
C′/S′

⊗−1
if g = 0;

• Ω1
C′/S′

⊗3
if g ≥ 2.

Then F ′ is very ample relatively to S ′ (see [Z], Theorem 2.9.), and we set E ′ :=
f∗(F ′). The very ample sheaf F ′ defines a closed immersion C ′ → P(E ′), given
by an homogeneous sheaf of ideals I ′ in P(E ′). Since pushforward commutes with
flat base-change, from the descent datum ϕ we obtain a descent datum of quasi-
coherent sheaves E ′ relative to S ′ → S. By Fact 4.4 we obtain a quasi-coherent
sheaf E on S. The morphism P(E ′) → P(E) is faithfully flat (because taking the
Proj commutes with base change), hence we obtain a descent datum for the sheaf
I ′ relative to the fppf-cover P(E ′) → P(E) and therefore a sheaf I on P(E). The
injective morphism I ′ → OP(E ′) descends to a morphism I → OP(E) . Because
P(E ′)→ P(E) is faithfully flat, I → OP(E) is also injective. It is easily verified that
the closed subscheme C ⊂ P(E) defined by I is a curve of genus g over S.

Any category fibered in groupoids satisfying the analogous of Prop. 4.1 and
Theorem 4.3 is called an fppf-stack over Sch. So we have just seen that Mg is an
fppf-stack for g 6= 1. By fact 4.4, QCoh is a fpqc stack.

Lemma 4.5. Let F : Schopp → Sets be an fppf-sheaf and XF the associated
category fibered in groupoids (see Definition 3.5). Then XF is an fppf-stack.

Proof. That the Isom functor is a sheaf is easy, since the only morphisms in the
fiber categories are the identities. That descent is effective is exactly the sheaf
property.
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In particular, the category fibered in groupoids XS associated to a scheme S is
an fppf-stack, and we will simply write S for it.

The category fibered in groupoids M1 is not an fppf stack. The problem with
genus 1 curve is that the sheaf of differentials Ω1 and the structure sheaf O are
both of degree zero, so there is no canonical choice of a very ample sheaf. There
are examples of Raynaud ([R]) and Zomervrucht ([Z]) of descent data of curves
of genus 1 that are not effective. The lack of canonical ample sheaves can be
overcome if one considers instead families of curves C → S admitting sections.
We are led to the following definition:

Definition 4.6. An n-pointed curve is the datum of a curve C → S and of n sec-
tions s1 . . . , sn : S → C such that the set-theoretic images s1(S), s2(S), . . . , sn(S) ⊂
C are disjoint.

Let g, n ≥ 0 be integers. We denote by Mg,n → Sch the category fibered in
groupoids of n-pointed genus g curves. Its morphisms are morphisms of curves
compatible with the n sections.

Fact 4.7. Let n ≥ 1, g ≥ 0. The category fibered in groupoids Mg,n is an fppf
stack.

Idea of the proof. Similar to the proof of Theorem 4.3, except that we use the very
ample sheaves O((2g + 1)s1) in place of the sheaves of differentials.

Example 4.8.

• Mg,0 =Mg;

• the stack M1,1 is the stack of elliptic curves; this is not the j-line A1, but
there is a map of stacksM1,1 → A1 through which every map fromM1,1 to
a scheme factors. The j-line A1 is an example of coarse moduli space.

• there is an equivalence of categories M0,3 → SpecZ.

• there is an equivalence of categories M0,4 → P1
Z \ {0, 1,∞}.

5 Fiber products in CFG

We want to study further the stacks Mg,n, so it would be nice if we were able to
employ the usual vocabulary of algebraic geometry also when dealing with stacks.
For example, we would like to be able to ask ourselves “is the stack Mg smooth
over SpecZ?”, “is the morphism Mg,1 →Mg surjective?”, and so on.

For this, we introduce fiber product in CFG. 2

Definition 5.1. Let C,D, E be categories fibered in groupoids over Sch, and let
α : C → D, β : E → D be morphisms in CFG. The category fibered in groupoids
C ×D E → Sch is defined as follows:

• its objects over a scheme T are of the form (c, e, ϕ), where c is an object of
C(T ), e an object of E(T ) and ϕ : α(c)→ β(e) an isomorphism in D(T ).

2Actually, the definition we give is that of fiber product in the sub-2-category of CFG given
by allowing only invertible 2-arrows.
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• its morphisms (c, e, ϕ)→ (c′, e′, ϕ′) are given by morphisms c′ → c′ in C and
d→ d′ in D over the same S → S ′, such that the diagram

α(c)
ϕ //

��

β(e)

��
α(c′)

ϕ′
// β(e′)

commutes.

Example 5.2. LetMg →Mg×Mg be the diagonal map, and let T →Mg×Mg

correspond to a pair (C,C ′) of curves over T . Then the fiber productMg×Mg×MgT
is the sheaf IsomT (C,C ′) (seen as a category fibered in setoids).

Definition 5.3. Let f : C → D be a morphism of categories fibered in groupoids
over Sch. We say that f is representable by schemes if for every scheme T and
morphism T → D in CFG, the fiber product C ×D T is (equivalent to) a scheme.

Definition 5.4. Let f : C → D be a morphism of categories fibered in groupoids
over Sch representable by schemes. Let P be a property of morphisms of schemes
that is:

• stable under base change;

• fppf local on the target.

We say that f has the property P if for all schemes T and morphisms T → D, the
base change C ×D T → T has the property P .

Example 5.5. Let T be a scheme, g a non-one non-negative integer, and let
T → Mg correspond to a curve C → T in Mg(T ). Then there is a cartesian
diagram in CFG

C //

��

T

��
Mg,1

//Mg

where the lowest arrow is the forgetful morphism. So Mg,1 → Mg is smooth,
proper, surjective, of relative dimension 1. This earns the morphism of stacks
Mg,1 → Mg the name of universal curve of genus g. Indeed, any curve C → T
arises as a pullback of Mg,1 →Mg!
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