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Introduction

Let f ∈ Z[X] be monic separable of degree n. Let L be a splitting field
of f over Q and let G be the Galois group of L/Q. For a prime number p
consider the factorization of f mod p. Consider the list of the degrees of the
irreducible factors as a partition of n and call this partition the factorization
type of f mod p. Furthermore, for each element g of G consider the cycle
type of g, induced by the action of G on the set of roots of f , also as a
partition of n.

Let C be a partition of n. The Chebotarev density theorem states that the
fraction of elements of G having cycle type C equals the density of prime
numbers p for which f mod p has factorization type C. In particular, the
latter density exists and is rational. In the first chapter of this thesis, a
precise statement of the Chebotarev density theorem will be made and some
background will be given.

In particular, the theorem implies that the fraction of primes for which f mod
p totally splits into linear factors is equal to the fraction of elements that have
cycle type (1, 1, . . . , 1). As only the identity has that cycle type, this fraction
equals 1

|G| . This suggests an algorithm to find the size of G. Namely, count
the primes p < x for which f mod p splits into linear factors. As x→∞ the
fraction of primes having this property will tend to 1

|G| . In principle we can
use an effective version of the Chebotarev density theorem to turn this into
a correct but very slow algorithm.

Note, in the typical case the group G is isomorphic to Sn (see [17]). In this
case there are very few primes for which f mod p splits into linear factors.
We would expect x to need to be at least n! to hope to be able to distinguish
between the size of Sn and the size of An. This makes this algorithm very
inefficient to use for very many of the polynomials.

F. Rodriguez Villegas (personal communication, 27 March 2012) came up
with the idea of using representation theory to improve upon this algorithm.
In this thesis we will explain this idea, and discuss two algorithms based on
it.

In the second chapter all necessary representation theory will be treated. The
third chapter will contain a description of this improved algorithm together
with a correctness proof and runtime analysis. In the fourth and final chapter
a probabilistic model will be used to quantify heuristically how much better
the improved algorithm is in comparison to the original algorithm.
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1 Chebotarev density theorem

1.1 Setting

First we will describe the setting in which the Chebotarev density theorem
will be stated. The following definitions and notations will be used through-
out the whole chapter.

For a group H denote by C(H) its set of conjugacy classes. If h ∈ H is an
element, then C(h) is the conjugacy class of h.

Let f ∈ Z[X] be a monic polynomial of degree n and let L/Q be a splitting
field of f . Let G be the Galois group of L/Q. Let Q be an algebraic closure
of Q. Furthermore, assume that f has no multiple roots in Q, i.e. assume
that the discriminant ∆(f) is non-zero.

We will define a map ι : C(G) → C(Sn) as follows. Fix a bijection between
the set of roots of f in Q and {1, . . . , n}. Consider G as subgroup of Sn via
this bijection and let ι : C(G)→ C(Sn) be the map induced by the inclusion
G ⊂ Sn. This map does not depend on the chosen bijection. Furthermore,
this map generally is not injective or surjective.

We recall some algebraic number theory.

Definition 1.1.1 (Ring of integers). The ring of integers of L is

OL = {x ∈ L : there is a g ∈ Z[X] such that g is monic and g(x) = 0} ⊂ L.

Remark 1.1.2. Since f is monic, the roots α1, . . . , αn ∈ L of f are elements
of OL.

The following proposition states that the ring of integers is indeed a ring and
it also states some useful properties of OL.

Proposition 1.1.3. The ring of integers OL is a subring of L. It is a
Dedekind domain. In particular, every non-zero ideal in OL factors uniquely
into prime ideals.

Proof. We give references for the assertions of the proposition. The fact that
OL is a ring follows from Proposition 5 of [9, I.§2] applied on the ring Z ⊂ L.
By Theorem 1 of [9, I.§2] OK is finitely generated as Z-module and hence it
is a Noetherian ring. By Corollary 5.5 of [1, ch. 4] OK is integrally closed.
By Proposition 10 of [9, I.§3] every non-zero prime ideal of OK is maximal.
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Hence OL is a Dedekind domain and Theorem 2 of [9, I.§6] implies that every
non-zero ideal in OL factors uniquely into prime ideals.

1.2 Frobenius substitution

Let p ∈ Z be a prime number. Let Fp be an algebraic closure of Fp. The
following definition of a place of L over p is equivalent to the definition given
in [15] and it is not equivalent to the standard definition of a place of a
number field.

Definition 1.2.1 (Place of L over p). A place ψ of L over p is a morphism
ψ : OL → Fp of rings.

Proposition 1.2.2. A place of L over p exists.

Proof. Let B ⊂ OL be some maximal ideal containing p. Let q : OL → OL/B
be the natural quotient map. Then OL/B is a field of characteristic p.
Furthermore OL/B is an algebraic extension of Fp, since L is an algebraic
extension of Q. Hence there exists an injection i : OL/B→ Fp. Then i ◦ q is
a place of L over p.

Proposition 1.2.3. Let ψ be a place of L over p and let θ ∈ Aut(Fp) and
τ ∈ G be automorphisms of Fp respectively L. Then θ ◦ ψ ◦ τ is a place of L
over p.

Proof. This follows immediately from the fact that compositions of ring mor-
phisms are ring morphisms.

Lemma 1.2.4. Suppose that ψ and ψ′ are places of L over p. Then there
exists a τ ∈ G such that ψ′ = ψ ◦ τ . Furthermore, if p - ∆(f) then τ is
unique.

Proof. The existence of τ follows from Corollary 1 of [9, I.§5]. Suppose that
p - ∆(f). Since p - ∆(f) and f is monic, f ∈ Fp[X] has n distinct roots in Fp.
In particular if α1, . . . , αn ∈ OL are the roots of f then ψ(α1), . . . , ψ(αn) ∈ Fp
are distinct. If τ, τ ′ ∈ G satisfy ψ′ = ψ ◦ τ = ψ ◦ τ ′, then ψ = ψ ◦ τ(τ ′)−1

and hence τ(τ ′)−1 fixes α1, . . . , αn. Therefore, τ(τ ′)−1 = id and hence τ = τ ′.
This proves the uniqueness of τ .
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Suppose that p - ∆(f). Let ψ be a place of L over p, which exists because of
Proposition 1.2.2. Let F : Fp → Fp : x 7→ xp be the Frobenius automorphism.
By Proposition 1.2.3 the map F ◦ψ is also a place of L over p and by Lemma
1.2.4 there exists a unique element τψ ∈ G such that F ◦ ψ = ψ ◦ τψ. If we
chose the place ψ′ of L over p instead of ψ, then ψ′ = ψ ◦ σ for some unique
σ ∈ G. Hence F ◦ ψ′ = F ◦ ψ ◦ σ = ψ ◦ τψσ = ψ′ ◦ σ−1τψσ, i.e. τψ′ = σ−1τψσ.
Therefore, the following is well-defined.

Definition 1.2.5 (Frobenius substitution). Let p ∈ Z be a prime such that
p - ∆(f). Then the Frobenius substitution of p is Fp := C(τψ) ∈ C(G), where
ψ is some place of L over p.

Example 1.2.6. Take f = X3 − 2. Then L = Q( 3
√

2, ζ3) has Galois group
G = S3 over Q. Furthermore, B = (5, 3

√
2− 3)OL is prime and OL/B ∼= F25.

The roots of f in OL/B are 3, 3ζ3, 3ζ23 . Then the Frobenius automorphism

maps 3ζ i3 to 3ζ2i3 for i = 0, 1, 2. Let σ ∈ G be the element of the Galois group
for which σ(ζ i3

3
√

2) = ζ2i3
3
√

2 for i = 0, 1, 2, then F5 = C(σ) = C((12)).

Definition 1.2.7 (Factorization type). Let p be a prime. Then the fac-
torization type of f modulo p is the unordered partition (n1, . . . , nt) of n
consisting of the degrees of the irreducible factors of f ∈ Fp[X]. Denote by
C(f, p) ∈ C(Sn) the class consisting of the permutations that have cycle type
(n1, . . . , nt).

The following useful lemma links the Frobenius substitution with the factor-
ization of f ∈ Fp[X].

Lemma 1.2.8. For all primes p such that p - ∆(f) we have ι(Fp) = C(f, p).

Proof. Notice that by definition Fp permutes the roots of f in L in the same
way as F permutes the roots of f mod p in Fp. It is a known fact (see
for example [14, §22]) that F permutes the roots of each irreducible factor
cyclically. The statement of the lemma then follows immediately.

1.3 Densities

Let P ⊂ Z be the set of prime numbers. There are different notions of the
density of subsets of P .

Definition 1.3.1 (Natural density). Let A ⊂ P be a subset and suppose
that the limit

d(A) := lim
x→∞

|{p ∈ A : p 6 x}|
|{p ∈ P : p 6 x}|
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exists. Then d(A) is called the natural density of A.

The natural density is perhaps the most natural notion of density. The
following notion of density, the Dirichlet density, is much harder to come up
with and it might feel unnatural. However, the Chebotarev density theorem
and many other density theorems in number theory were originally proven
for the Dirichlet density.

Definition 1.3.2 (Dirichlet density). Let A ⊂ P be a subset and suppose
that the limit

δ(A) := lim
s↓1

∑
p∈A

1
ps∑

p∈P
1
ps

exists. Then δ(A) is called the analytic or Dirichlet density of A.

The natural density and the Dirichlet density are related in the following
way.

Lemma 1.3.3. Let A ⊂ P be a subset and suppose that the natural density
d(A) of A exists. Then the Dirichlet density of A exists and δ(A) = d(A).

Proof. This follows from Theorem 2 and Theorem 3 of [16, p.272–274].

However, the converse is not true. There are subsets of P which have a
Dirichlet density and do not have a natural density. One of them is the
following subset.

Example 1.3.4. The subset {p ∈ P : the first digit of p is a 1} has Dirichlet
density log 2

log 10
, but it does not have a natural density, see [3].

We derive some useful results for the Dirichlet density.

Proposition 1.3.5. Let A,B ⊂ P be such that A∩B = ∅. Suppose that two
of the densities δ(A), δ(B), δ(A∪B) exist, then the third one exists and they
satisfy:

δ(A) + δ(B) = δ(A ∪B).

In particular, if C ⊂ D ⊂ P are subsets and δ(C) and δ(D) exist, then
δ(C) 6 δ(D).
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Proof. For every s > 1 we have∑
p∈A

1
ps∑

p∈P
1
ps

+

∑
p∈B

1
ps∑

p∈P
1
ps

=

∑
p∈A∪B

1
ps∑

p∈P
1
ps

.

By using the fact that addition and subtraction are continuous the result
follows for the limit s ↓ 1. In particular, δ(D) = δ(C) + δ(D \ C) > δ(C),
because densities are clearly non-negative.

Proposition 1.3.6. Let A ⊂ P be finite. Then δ(A) = 0.

Proof. Notice that lims↓1
∑

p∈A
1
ps
<∞ and lims↓1

∑
p∈P

1
ps

=∞. The result
now follows immediately.

Corollary 1.3.7. Let A,B ⊂ P such that A\B and B\A are finite. Suppose
that δ(A) exists. Then δ(B) exists and δ(A) = δ(B).

Proof. By applying Propositions 1.3.5 and 1.3.6 we find

δ(A) = δ(A) + δ(B \ A) = δ(A ∪B) = δ(B) + δ(A \B) = δ(B).

Remark 1.3.8. Propositions 1.3.5, 1.3.6 and Corollary 1.3.7 are also true if
the Dirichlet density is replaced with the natural density. The proofs are
analogous to the proofs for the Dirichlet density and will not be given in
detail.

1.4 Chebotarev density theorem

Theorem 1.4.1 (Chebotarev density theorem). The following holds for ev-
ery conjugacy class C ∈ C(G):

δ ({p ∈ P : p - ∆(f) and Fp = C}) =
|C|
|G|

.

Proof. See [15] or [10, p.545].

The theorem is also true if the Dirichlet density is replaced by the natural
density. However, the result was first proven by Chebotarev for the Dirich-
let density in [4]. The following famous theorems are special cases of the
Chebotarev density theorem.
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Corollary 1.4.2 (Dirichlet’s theorem). Let n ∈ Z be a positive integer. Then
for each a ∈ Z with gcd(a, n) = 1 the following holds:

δ ({p ∈ P : p ≡ a mod n}) =
1

ϕ(n)
.

Proof. Take f = Xn − 1. Then we get L = Q(ζn) and ρ : (Z/nZ)∗ →
G : (a mod n) 7→ (ζn 7→ ζan) is an isomorphism. Notice that we have Fp =
C(ρ(p mod n)). Furthermore, note that as G is abelian, conjugacy classes
consist of 1 element. Also, note that due to Corollary 1.3.7 it does not matter
if we consider or exclude the finitely many primes p such that p | ∆(f).
Therefore, the Chebotarev density theorem (1.4.1) immediately yields the
desired result.

Corollary 1.4.3 (Frobenius’ theorem). The following holds for all C ∈
C(Sn):

δ({p ∈ P : C(f, p) = C}) =
|{g ∈ G : ι(g) ∈ C}|

|G|
.

Proof. Notice that {g ∈ G : ι(g) ∈ C} = ι−1(C) ⊂ G is a union of conjugacy
classes. Then use the Chebotarev density theorem (1.4.1) for these conjugacy
classes. Also, note that due to Corollary 1.3.7 it does not matter if we
consider or exclude the finitely many primes p such that p | ∆(f). Lemma
1.2.8 then finishes the proof of the statement.
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2 Representation theory

2.1 Definitions

Let G be a finite group. Denote by C(G) its set of conjugacy classes. If
s ∈ G is an element, then C(s) ∈ C(G) is the conjugacy class of s.

Definition 2.1.1 (Group algebra). The group algebra C[G] is the C-algebra
whose elements are formal sums

∑
s∈G css where cs ∈ C for all s ∈ G. If

a =
∑

s∈G ass and b =
∑

s∈G bss are two elements, then their sum is a+ b :=∑
s∈G(as + bs)s and their product is

a · b :=
∑
s,t∈G

asbt(st).

Definition 2.1.2 (Representation). A representation V of G is a (left) C[G]-
module that is finite-dimensional as C-vector space. A morphism of repre-
sentations is a morphism of C[G]-modules.

Remark 2.1.3. A representation V gives rise to the morphism ρV : G →
AutC(V ) : s 7→ (v 7→ s · v). Conversely, if V is a finite dimensional C-vector
space and ρ : G → AutC(V ) a morphism, then V together with ρ defines a
representation by s · v = ρ(s)(v) for all s ∈ G and v ∈ V .

Examples 2.1.4. 1. The trivial representation is the C[G]-module T = C
where G acts trivially, i.e. s · v = v for all v ∈ T and s ∈ G. This
representation is sometimes also denoted by C.

2. Let G = Sn. The sign representation is the C[G]-module S = C where
G acts via the sign morphism, i.e. s · v = sgn(s) · v for all v ∈ T and
s ∈ G.

3. Let G = Sn. Let W be the (n−1)-dimensional subspace of Cn of vectors
whose sum of coordinates is zero. Let G act on W by permuting the
coordinates of the vectors, i.e. s · (v1, . . . , vn) = (vs−1(1), . . . , vs−1(n)).
This representation W is called the standard representation of Sn.

Representations can be restricted to a subgroup or induced to a larger group.

Definition 2.1.5 (Restricted representation). Let H ⊂ G be a subgroup
and let V be a representation of G. Then the restricted representation V |H
or ResGHV is V where the action of C[G] is restricted to C[H].
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Definition 2.1.6 (Induced representation). Let H ⊂ G be a subgroup and
let V be a representation of H. Consider C[G] as right C[H]-module by the
multiplication in C[G]. Then the induced representation IndGHV is C[G]⊗C[H]

V where C[G] acts on the left factor, i.e. s·(t⊗v) = (s·t)⊗v for all s, t ∈ C[G]
and v ∈ V .

Example 2.1.7. Take H = 1 and V = C. Then IndG1 V is C[G] where C[G]
acts on the induced representation by left multiplication.

As in many other categories there are some useful ways to construct repre-
sentations of G out of other representations of G. We discuss some of them.

Definition 2.1.8 (Direct sum of representations). Let V and W be repre-
sentation of G. Their direct sum V ⊕W is their direct sum as C[G]-modules,
i.e. G acts as follows: s · (v, w) = (s · v, s ·w) for all s ∈ G, v ∈ V and w ∈ W .

Definition 2.1.9 (Tensor product of representations). Let V and W be
representations of G. The tensor product V ⊗C W is a representation of G
with G acting on both factors, i.e. s · (v ⊗ w) = (s · v) ⊗ (s · w) for all
s ∈ G, v ∈ V and w ∈ W .

Definition 2.1.10 (Dual representation). Let V be a representation of G.
The dual representation is V † = HomC(V,C) where G acts as follows: s ·
f : v 7→ f(s−1 · v) for all s ∈ G, f ∈ V † and v ∈ V .

Some character theory now follows.

Definition 2.1.11 (Character). Let V be a representation of G. Then the
character of V is the function

χV : C(G)→ C : C(s) 7→ Tr(ρV (s)).

Example 2.1.12. Let G = S3. Then the characters of the representations
defined in Examples 2.1.4 are as follows.

C(id) C((12)) C((123))
χT 1 1 1
χS 1 −1 1
χW 2 0 −1

Definition 2.1.13 (Irreducible representation). A representation V is called
irreducible if V has exactly two submodules: the zero module and V itself.
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Definition 2.1.14 (Class function). A class function is a function C(G)→
C. The space of class functions is the inner product space CC(G) equipped
with the usual addition and scalar multiplication and the following inner
product:

〈·, ·〉G : CC(G) × CC(G) → C : (α, β) 7→ 〈α, β〉G :=
1

|G|
∑
s∈G

α(C(s))β(C(s)).

Definition 2.1.15 (Irreducible character). A class function χ is called an
irreducible character if there exists an irreducible representation V such that
χ = χV .

Definition 2.1.16 (Virtual character). A class function χ ∈ CC(G) is called
a virtual character if there exist representations V and W of G such that
χ = χV − χW .

2.2 Results

A lot is known about group representations. In this section some of the
results of the representation theory of finite groups will be presented.

Characters behave well with respect to the direct sum, tensor product and
dual of representations.

Proposition 2.2.1. Suppose that V and W are representations of G. Then
the characters of the representations V ⊕W,V ⊗C W and V † are as follows.

χV⊕W = χV + χW (1)

χV⊗CW = χV · χW (2)

χV † = χV (3)

Proof. Let s ∈ G be arbitrary and suppose that n = dimC(V ) and m =
dimC(W ). Furthermore, suppose that λ1, . . . , λn and κ1, . . . , κm are the
eigenvalues of ρV (s) respectively ρW (s) (see Remark 2.1.3).
Then the eigenvalues of ρV⊕W (s) are equal to λ1, . . . , λn, κ1, . . . , κm yielding
χV⊕W (C(s)) = (χV + χW )(C(s)). Furthermore, the eigenvalues of ρV⊗CW (s)
are equal to λiκj for i = 1, . . . , n and j = 1, . . . ,m, yielding χV⊗CW (C(s)) =∑n

i=1

∑m
j=1 λiκj = (χV · χW )(C(s)). Finally, the matrix ρV †(s) is the con-

jugate transpose of ρV (s). Hence its eigenvalues are λ1, . . . , λn yielding
χV †(C(s)) = χV (C(s)).
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The following lemma makes use of the fact that C has characteristic 0.

Lemma 2.2.2. Let V and W be representations of G. Then

χV = χW ⇐⇒ V ∼=C[G] W.

Proof. This follows from Theorem 9.2, 9.6 and 10.7 of [5].

Remark 2.2.3. The previous lemma shows that the irreducible characters are
exactly the characters corresponding to irreducible representations.

Lemma 2.2.4. The irreducible characters form an orthonormal basis of
CC(G).

Proof. This follows from Theorem 10.17 of [5].

Example 2.2.5. The characters in Examples 2.1.12 are in fact the irreducible
characters of S3 and one can check that these form an orthonormal basis of
CC(S3).

Let 1G = χT be the character of the trivial representation; it is given by
1G(C) = 1 for all C ∈ C(G). Then the following corollary of Lemma 2.2.4
will turn out to be very useful.

Corollary 2.2.6. If χ is a virtual character, then 〈χ, 1G〉G ∈ Z.

Frobenius reciprocity gives the relation between the characters of induced
and restricted representations.

Lemma 2.2.7 (Frobenius reciprocity). Let H ⊂ G be a subgroup, let V be a
representation of G and let W be a representation of H. Then the following
holds:

〈χV , χIndGHW
〉G = 〈χResGHV

, χW 〉H .

Proof. See Theorem 8.1.3 of [13].
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3 The Rodriguez Villegas algorithm

In this chapter two algorithms will be given. Both algorithms are based on
an idea of F. Rodriguez Villegas (personal communication, 27 March 2012)
of using character theory and the Chebotarev density theorem to find the
order of Galois groups.

3.1 Goal and notations

Let f ∈ Z[X] be a monic irreducible polynomial of degree n and let L/Q be a
splitting field of f . Let G be the Galois group of L/Q. Let Q be an algebraic
closure of Q. Note that the assumption that f is irreducible automatically
implies that f has no multiple roots in Q, i.e. that the discriminant ∆(f)
is non-zero. Furthermore, it implies that G acts transitively on the set of n
roots of f in Q.

Our goal is to compute |G|. We will make use of the following reformulation
of the Chebotarev density theorem.

Theorem 3.1.1. Let S be the set of primes not dividing ∆(f). Then, for all
functions φ : C(G)→ C we have

lim
x→∞

∑
p6x φ(Fp)

|{p ∈ S : p 6 x}|
=

∑
C∈C(G)

|C|
|G|

φ(C) = 〈φ, 1G〉G.

Proof. Apply the Chebotarev density theorem for the natural density as fol-
lows.

lim
x→∞

∑
p6x φ(Fp)

|{p ∈ S : p 6 x}|
=

∑
C∈C(G)

φ(C) · lim
x→∞

|{p ∈ S : Fp = C and p 6 x}|
|{p ∈ S : p 6 x}|

=
∑

C∈C(G)

|C|
|G|

φ(C) =
∑
g∈G

1

|G|
φ(C(g)) = 〈φ, 1G〉G.

For each subgroup H ⊂ Sn define the class function

δH1 : C(H)→ C : C(h) 7→

{
1 if h = 1;

0 otherwise.

The next lemma explains why theorem 3.1.1 is useful to us.
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Lemma 3.1.2. Suppose that H ⊂ Sn is a subgroup, then 〈δH1 , 1H〉H = 1
|H| .

Proof. This is just a trivial calculation.

For a subgroup H ⊂ Sn let ιH : C(H) → C(Sn) be the map induced by the
inclusion (see page 5). Note that G acts transitively on the set of n roots of
f . Hence, by fixing a bijection between {1, . . . , n} and the set of roots G can
be seen as subgroup of Sn. As already seen on page 5 the map ιG does not
depend on the choice of this bijection.

3.2 Precalculation

To compute the order of the Galois group of a polynomial f of degree n,
the algorithm will make use of a list of transitive subgroups of Sn, up to
conjugacy in Sn. This list of transitive subgroups is known for n 6 31 and
can be found, for example, by using Magma (see [2]).

Let k be the number of conjugacy classes of Sn and let CC(G) be the class
function space with its inner product as defined in Definition 2.1.14. The
algorithm needs an orthonormal basis ψ1, . . . , ψk : C(Sn)→ C of CC(G). For
example, take the standard basis of CC(G) and normalize its vectors.

For each transitive subgroup H in our list define

pH := (〈ψi ◦ ιH , 1H〉H)ki=1 ∈ Rk.

We will also precalculate these pH and store them in a table.

We will assume that these data are already available and we will not consider
the construction of the list of transitive groups, the orthonormal basis and
the table containing the pH ’s, as a part of the actual algorithm. Further-
more, notice that these data do not depend on f but only on its degree.

3.3 Algorithm

The input of the algorithm is a monic irreducible separable polynomial f
and an integer x. Let n be the degree of f . As stated in section 3.2 we will
assume that the list of transitive subgroups of Sn, the orthonormal basis
of CC(Sn) and the table containing the pH ’s are known. The output of the
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algorithm will be a natural number, which will equal the order of the Galois
group G if x is chosen large enough.

The algorithm proceeds as follows. First of all, calculate ∆(f). Let S be the
set of primes p 6 x such that p - ∆(f). For all primes p in S calculate the
factorization type C(f, p) of f mod p, and calculate

Ei =
1

|S|
∑
p∈S

ψi(C(f, p)).

Consider E := (Ei)
k
i=1 as a point of Rk. Choose a transitive subgroup H ⊂ Sn

from our list such that the Euclidean distance between pH and E is minimal
(note that there might be more than one closest point pH and more than one
group H representing the point) and output its order.

3.4 Correctness

In this section we will argue why the algorithm will output |G| for x large
enough. First we start with a lemma.

Lemma 3.4.1. Suppose that H,H ′ ⊂ Sn are transitive subgroups. Suppose
that pH = pH′. Then |H| = |H ′|.

Proof. By Lemma 2.2.4 there are coefficients c1, . . . , ck ∈ C such that we
have

∑k
i=1 ciψi = δSn1 . Then it is just a matter of calculation to verify that

(ci)
k
i=1 · pH =

k∑
i=1

ci〈ψi ◦ ιH , 1H〉H = 〈δH1 , 1H〉H =
1

|H|
.

Analogously (ci)
k
i=1 · pH = (ci)

k
i=1 · pH′ = 1

|H′| . Hence, |H| = |H ′|.

This lemma proves that the output of the algorithm only depends on the
choice of pH and not on the choice of a particular H.

Remark 3.4.2. Note that the output of the algorithm also does not depend
on the choice of the orthonormal basis as the Euclidean distance is preserved
under orthogonal transformations.

Furthermore, define φi = ψi ◦ ιG for i = 1, . . . , k. By Lemma 1.2.8 we have
φi(Fp) = ψi(C(f, p)) for all p ∈ S. Hence, by Theorem 3.1.1, Ei will be an
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estimate of 〈φi, 1G〉G for all i = 1, . . . , k in the sense that there exists an
x0 ∈ N such that pG is the closest pH for all x > x0.

As we already know that the output only depends on pH , we get the following
corollary that proves that our algorithm is correct if x is large enough.

Corollary 3.4.3. There exists an x0 ∈ N such that for all x > x0 the output
of the Rodriguez Villegas algorithm is equal to |G|.

Remark 3.4.4. There are effective versions of the Chebotarev density theorem
that give rise to effectively computable x0. However, these x0 are too large
to be of practical use to us.

3.5 Runtime analysis

The size of n is practically bounded by the requirement of the precalculations.
For the runtime analysis we will also assume that the coefficients of the
polynomial f are all bounded. Hence, we will only consider runtime in terms
of x.

The computation of the discriminant does not depend on x in any way and
can be done in O(1). In the algorithm we consider the primes p 6 x. By the
prime number theorem there are O( x

log x
) such primes. To find them we may

use a prime number sieve requiringO(x) operations (see [11]). For each prime
p we test divisibility of ∆(f) by p, which takesO(1) time. For the primes that
do not divide ∆(f) we need to factor f mod p. This factoring can be done
quite efficiently, namely in average run time O((log p)n2+ε) = O(log p) for
all ε > 0, by using the probabilistic Cantor-Zassenhaus algorithm (see [12]).
Hence, the second part of the algorithm takes at most O(x + x

log x
· log x) =

O(x) time. To find the closest pH we will look up all pH and calculate all
distances, this takes O(T (n) ·P (n)) = O(1) time, where T (n) is the number
of transitive subgroups on our precalculated list and P (n) the number of
conjugacy classes of Sn. Notice that the last part can be made more efficient
by using space partitioning methods. However, as this does not impose a
practical problem on the runtime, we will not do so.

3.6 Alternative algorithm

In this alternative version of the algorithm we will not need the list of tran-
sitive groups. Now ψ1, . . . , ψk : C(Sn) → C are the irreducible characters of
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Sn and we assume that these irreducible characters are precalculated. For
example, by using Magma (see [2]) one can calculate the character table of
Sn for n 6 25.

The input consists of the polynomial f and an integer x and the output will
again be a natural number, which will be the group order |G| if x is chosen
large enough.

The following lemma has a corollary that will be useful for the alternative
algorithm.

Lemma 3.6.1. Let ψ be a virtual character of Sn. Then, for all subgroups
H ⊂ Sn we have 〈ψ ◦ ιH , 1H〉H ∈ Z.

Proof. By definition there are representations V and W of Sn such that
ψ = χV − χW . We get that ψ ◦ ιH = χResSnH V − χResSnH W and 1H = χC, where

C is viewed as representation of H. Lemma 2.2.7 and Corollary 2.2.6 give
that 〈ψ ◦ ιH , 1H〉H = 〈ψ, χIndSnH C〉Sn ∈ Z.

Corollary 3.6.2. We have 〈φi, 1G〉G ∈ Z for all i = 1, . . . , k, and hence
pG ∈ Zk.

The calculation of E is exactly the same as in the original algorithm, however
we will not look for the closest pH , instead, we will look for the closest point
in q ∈ Zk. Then we will calculate P := (ci)

k
i=1 · q where the ci are as in the

proof of Lemma 3.4.1. The output is a divisor d of n! such that |d − P | is
minimal.

Again notice that E converges to pG if x → ∞. By Corollary 3.6.2 we have
that pG ∈ Zk. Hence, the point q will eventually become pG. Hence, also this
alternative version of the algorithm outputs |G| if x is large enough. The
runtime, as function of x, is similar to the runtime we found for the original
algorithm.

3.7 Examples

Consider the following polynomials.

f1 := x12 − x11 + . . .− x+ 1;

f2 := x12 + 4x11 + 8x10 − 160x9 + 144x8 + 612x7 − 276x6

− 1164x5 + 1209x4 − 380x3 + 22x2 + 8x− 1;

f3 := x12 − x9 − x4 + x+ 1.
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All these polynomials are irreducible. For j = 1, 2, 3, let Lj be a splitting
field of fj over Q, then the Galois group of Lj/Q is the cyclic group C12 of
order 12 if j = 1, the Mathieu group M12 of order 95040 if j = 2 and the
symmetric group S12 of order 479001600 if j = 3 (see [8]).

In the following tables, for a number of values of x the output Q of the
Rodriguez Villegas algorithm, the output Q′ of the alternative version and
the distance between pH and E are depicted. Recall the naive algorithm in
which we count the totally split primes and then round the inverted fraction
to the nearest divisor of n! (or ∞ if no totally split primes were found). For
j = 1 the output W of the naive algorithm is also presented. As for j = 2, 3
no primes smaller than x were found for which f mod p totally splits into
linear factors, the output of the naive algorithm is not included in these cases.

x Q |pH − E| Q′ W
101 15552 117.50 46200 ∞
102 12 324.35 12 12
103 12 14438 12 14
104 12 3529.5 12 12
105 12 8.1572 12 12
106 12 0.4541 12 12

Table for j = 1.

x Q |pH − E| Q′

101 239500800 9.0000 1
102 95040 62.698 56320
103 95040 1.0484 95040
104 95040 0.1951 95040
105 95040 0.0806 95040
106 95040 0.0563 95040

Table for j = 2.
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x Q |pH − E| Q′

101 479001600 8.6875 1
102 479001600 1.7184 479001600
103 479001600 0.2900 479001600
104 479001600 0.0593 479001600
105 479001600 0.0075 479001600
106 479001600 0.0008 479001600

Table for j = 3.

Note that the naive algorithm only works for very small groups. The Ro-
driguez Villegas algorithm appears to be the best algorithm. It outputs the
correct group order already for x = 102, though the large distance |pH − E|
suggests that this might be coincidental.

The distance |pH − E| converges faster to 0 for large groups G. In the case
j = 3, for example, we only need to consider the primes up to 104 to find an
E within distance 0.1 of pG. By comparison, the naive algorithm would need
at least 12! ≈ 4,8 · 108 primes to hope to be able to distinguish between the
order of S12 and the order of A12.
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4 A probabilistic model

Let f ∈ Z[X] be a monic irreducible polynomial of degree n, let L/Q be a
splitting field of f and let G be the Galois group of L/Q. Furthermore, let p
be a prime number and let C ∈ C(Sn) be a conjugacy class. The Chebotarev
density theorem suggests that the ‘probability’ that f mod p has factorization
type C equals the probability that a random element of G has cycle type C.

To analyse the Rodriguez Villegas algorithm of the previous chapter, we will
consider a probabilistic model in which factorization types will be drawn ran-
domly according to the probability distribution implied by the Chebotarev
density theorem. This analysis will give us an idea why the Rodriguez Vil-
legas algorithm is better than the naive algorithm (see page 20), at least for
large Galois groups.

In principle, we could also use an effective version of the Chebotarev density
theorem to further analyze the algorithm. However, this amounts to a lot of
calculations and the bounds will become quite weak.

4.1 The model

Now letG ⊂ Sn be a transitive subgroup (not necessarily a Galois group). For
a subgroup H ⊂ Sn let ιH : C(H)→ C(Sn) be the map induced by the inclu-
sion (see page 5). Let k be a natural number and let ψ1, . . . , ψk : C(Sn)→ R
be real-valued class functions of Sn such that 〈ψi, 1H〉H ∈ Z for all transitive
subgroups H ⊂ Sn and all i = 1, . . . , k. Furthermore, define φi = ψi ◦ ιG.
We will also assume that there are coefficients c1, . . . , ck ∈ C such that we
have

∑k
i=1 ciψi = δSn1 (see page 15). This will assure us that the conclusion

of Lemma 3.4.1 holds.

Let X be a random variable with state space G such that for all g ∈ G we
have that Pr(X = g) = 1

|G| . Define Y = ιG(C(X)), i.e. the cycle type of the

element X. Furthermore, define the random variable Z(i) on the state space
C by Z(i) = ψi(Y ) = φi(C(X)). Let σiZ be the standard deviation of Z(i).

Just like in the Rodriguez Villegas algorithm our goal is to find the value of

〈φi, 1〉G =
∑
g∈G

Pr(X = g) · φi(C(g)) =
∑

z∈φi(C(G))

Pr(Z(i) = z) · z = E(Z(i)).

We will consider a Monte Carlo experiment with an oracle that outputs ele-
ments of C(Sn) according to the probability distribution of Y . In the experi-
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ment we estimate µi := E(Z(i)) by calculating the sample average of ψi(Y ).

More formally, let N > 0 be an integer, let Z
(i)
j for j = 1, . . . , N be indepen-

dent and identically distributed copies of Z(i) and let A(i) = 1
N

∑N
j=1 Z

(i)
j be

the sample average.

4.2 Analysis

The following proposition tells us what Var(A(i)) is, which measures the
expected error in A(i).

Proposition 4.2.1. The variance Var(A(i)) is equal to 1
N
〈φ′i, φ′i〉G where φ′i =

φi − 〈φi, 1G〉G · 1G.

Proof. By basic probability theory we derive

Var(A(i)) =
1

N2

N∑
j=1

Var(Z
(i)
j ) =

1

N2
·N(σiZ)2 =

1

N
(σiZ)2.

Furthermore, it is just a matter of calculation to find

(σiZ)2 = E((Z(i) − µi)(Z(i) − µi)) = E(Z(i)Z(i))− µ2
i − µ2

i + µ2
i

= E(Z(i)Z(i))− µ2
i =

∑
g∈G

1

|G|
φi(g)φi(g)−

(∑
g∈G

1

|G|
φi(g)

)2

= 〈φi, φi〉G − (〈φi, 1G〉G)2 = 〈φ′i, φ′i〉G.

This proves the assertion.

Remark 4.2.2. Suppose that ψ1, . . . , ψk are the irreducible characters of G.
Then the variance is bounded by 1

N
〈φi, φi〉G 6 〈ψi,ψi〉Sn ·|Sn|

N ·|G| = 1
N

[Sn : G].

Therefore, if [Sn : G] is small we would expect to have faster convergence.
This is completely in line with our observations in section 3.7.

Let r : Rk → Z be any function that has the property that it maps a point
q ∈ Rk to the order of a transitive subgroup H ⊂ Sn such that |q − pH | is
minimal, where pH is defined as on page 16. As Lemma 3.4.1 holds by our
assumptions, it is obvious that the probability that η := r((A(i))ki=1) equals
|G| tends to 1 as N →∞. In the following theorem a more precise statement
is made.
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Theorem 4.2.3. Let Mi be the maximum value that |Z(i) − E(Z(i))| may
attain. Then

Pr(η = |G|) > 1−
k∑
i=1

2e
−

1
4N

2(σi
Z
)2+Mi/3 .

Proof. For i = 1, . . . , k, let Qi be the event that |A(i) − µi| < 1
2
. Applying

Theorem 2.6 of [6] gives that

Pr
(
A(i) > E(Z(i)) + 1

2

)
6 e

−
1
4N

2

2(N(σi
Z
)2+MiN/6) .

By applying the same inequality to the case where A(i) 6 E(Z(i))− 1
2

we find
that

Pr (not Qi) 6 2e
−

1
4N

2(σi
Z
)2+Mi/3 .

Note that η = |G| certainly holds if Qi happens for all i = 1, . . . , k. By using
the laws of probability we find

Pr(η = |G|) > 1−
k∑
i=1

Pr(not Qi) > 1−
k∑
i=1

2e
−

1
4N

2(σi
Z
)2+Mi/3 .

In the next section, this upper bound will be calculated for a few example
cases to give an idea about the size of N that is sufficient to have a small
error probability.

4.3 Examples

For the example groups occurring in section 3.7 we have calculated the bound

B :=
k∑
i=1

e
−

1
4N

2(σi
Z
)2+Mi/3

given in Theorem 4.2.3. The following tables contain the bounds for different
values of N .
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N 107 108 109

B 15.6 0.181 2.042 · 10−12

Bounds for j = 1 (order 12)

N 104 105 106

B 11.2 3.42 · 10−3 7.91 · 10−29

Bounds for j = 2 (order 95040)

N 104 105 106

B 7.62 1.35 · 10−4 1.08 · 10−42

Bounds for j = 3 (order 479001600)

For j = 2 and j = 3 the bound is not useful for N = 104 as B > 1 in these
cases, but it is already quite strong for N = 105. This is due to the quite
large value of the Mi (the largest Mi is 7700).

For j = 1 it takes very long for the bound to become useful. This is due to
the large variance that occurs (the largest (σiZ)2 is 4526132). In section 3.7
we have already seen that for j = 1 the convergence of E to pG was very
slow, which is completely in line with the above result.
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[16] Gérald Tenenbaum. Introduction to analytic probabilistic number theory.
Translated by C.B. Thomas. Cambridge University Press, Cambridge,
1995.

[17] B.L. van der Waerden. Die Seltenheit der Gleichungen mit Affekt. Math-
ematische Annalen 109 (1934): 13–16.

30

http://websites.math.leidenuniv.nl/algebra/algebra3.pdf
http://websites.math.leidenuniv.nl/algebra/algebra3.pdf

	Title page
	Contents
	Introduction
	Chebotarev density theorem
	Setting
	Frobenius substitution
	Densities
	Chebotarev density theorem

	Representation theory
	Definitions
	Results

	The Rodriguez Villegas algorithm
	Goal and notations
	Precalculation
	Algorithm
	Correctness
	Runtime analysis
	Alternative algorithm
	Examples

	A probabilistic model
	The model
	Analysis
	Examples

	Acknowledgements
	Bibliography

