Homework 3

Curves over finite fields, Autumn 2017, Leiden

Deadline: Monday 11 December 2017

Problem 1. Consider the curve $\mathcal{C} = \mathbb{P}^1$ over $\mathbb{F}_{2^{\ell}} = \{x_1, \ldots, x_{2^{\ell}}\}$ with coordinates (X : Y). Consider the points $P_i = (x_i : 1) \in \mathcal{C}(\mathbb{F}_{2^{\ell}})$ for $i = 1, \ldots, 2^{\ell}$, and, moreover, let D be the divisor $r \cdot (1 : 0)$ for some $r \ge 0$. Let C_r be the Goppa code associated with (\mathcal{C}, D) inside $\mathbb{F}_{2^{\ell}}^{2^{\ell}}$ (using all the P_i).

- (a) Find the length and the minimum distance of C_r .
- (b) Suppose that $r < 2^{\ell} 1$. Prove that C_r is dual to $C_{2^{\ell}-r-2}$.

The function $\pi := \frac{Y}{X} \in \mathbb{F}_{2^{\ell}}(\mathcal{C})$ has a simple zero at (1:0). For each $f \in \mathcal{L}(D)$, we can evaluate the function $f \cdot \pi^r$ in $P_{2^{\ell}+1} = (1:0)$. With abuse of notation, we call this value f((1:0)). Let E_r be obtained by extending the Goppa code C_r to $\mathbb{F}_{2^{\ell}}^{2^{\ell}+1}$ by putting f((1:0)) on the the last coordinate, i.e. E_r is the image of

$$\varphi \colon \mathcal{L}(D) \to \mathbb{F}_{2^{\ell}}^{2^{\ell}+1} \colon f \mapsto (f(P_i))_{i=1}^{2^{\ell}+1}.$$

(c) Prove that E_r is an MDS code.

Problem 2. Do Exercise 23 from the coding theory lecture notes:

- (a) Construct an isomorphism between $V \otimes W$ and the space constructed in Remark 21 of the notes.
- (b) Prove that the map $\varphi: V \times W \to V \otimes W: (v, w) \mapsto v \otimes w$ is bilinear.
- (c) Prove that $V \otimes W$ and φ satisfy the following universal property: for any K-vector space T and any bilinear map $\rho: V \times W \to T$ there exists a unique linear map $\eta: V \otimes W \to T$, such that the following diagram commutes (i.e. $\eta \circ \varphi = \rho$):

$$V \times W \xrightarrow{\varphi} V \otimes W \xrightarrow{\eta} T$$

Problem 3. Do Exercises 40 and 41 from the coding theory lecture notes. Download your worksheet from https://sage.math.leidenuniv.nl/ and hand it in by e-mail. Put enough comments in your code, or hand in a separate explanation of your code with your homework solutions.

- (a) Use Magma to construct an [n, k, d]-code using algebraic geometry with $k, d \ge 200$ and $n \le 450$, just as we did in the lecture notes. Generate a random code word, randomly change 10 entries of the vector and try to decode the word (stop if it takes too long).
- (b) Use Magma again to repeat the procedure, but this time use the specific algebraic-geometric procedures that are implemented in Magma. Look up the functions AGDualCode and AGDecode in the Magma handbook.

Problem 4. Let *E* be a classical elliptic curve over \mathbb{F}_q , i.e. a smooth projective curve inside \mathbb{P}^2 given by a Weierstraß equation

$$Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} = X^{3} + a_{2}X^{2}Z + a_{4}XZ^{2} + a_{6}Z^{3}.$$

Let O = (0:1:0) be the chosen point on E.

- (a) For each $n \in \mathbb{Z}_{>0}$ give a basis for $\mathcal{L}(n \cdot O)$.
- (b) Prove that E has genus 1 by using Riemann-Roch.

Now suppose that E' is an elliptic curve over \mathbb{F}_q , i.e. a smooth projective curve of genus 1, together with an \mathbb{F}_q -rational point O'.

- (c) Prove that there exist functions x and y in $\mathbb{F}_q(E')$, having a pole of order 2 and 3 at O' and no other poles, respectively.
- (d) Prove that the map

$$\varphi \colon E' \to \mathbb{P}^2 \colon P \mapsto (x(P) : y(P) : 1)$$

is well-defined and injective.

(e) Prove that the points in the image of φ satisfy an equation of the shape

$$Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} = a_{0}X^{3} + a_{2}X^{2}Z + a_{4}XZ^{2} + a_{6}Z^{3},$$

for some $a_0, a_1, a_2, a_3, a_4, a_6 \in \mathbb{F}_q$.

Problem 5. Let *E* be the classical elliptic curve over \mathbb{F}_5 given by the equation $Y^2Z + YZ^2 = X^3 + XZ^2$ inside \mathbb{P}^2 with coordinates (X : Y : Z). Let $P := (0:0:1) \in E(\mathbb{F}_5)$.

- (a) Compute the number of \mathbb{F}_5 -rational points on E.
- (b) Compute $2 \cdot P$ and $3 \cdot P$.
- (c) Determine the order of P.

Let $Q := (1:1:1) \in E(\mathbb{F}_5), O := (0:1:0) \in E(\mathbb{F}_5)$ and let D be the divisor P + Q.

- (d) Compute $div((Y^2 + 4YZ)/Z^2)$.
- (e) Let $f \in \mathcal{L}(D)$. Prove that $f \cdot (Y^2 + 4YZ)/Z^2 \in \mathcal{L}(6O)$.
- (f) Use this to compute a basis for $\mathcal{L}(D)$. *Hint: use the results of* $\mathbf{4}(\mathbf{a})$.
- Let P_1 and P_2 be two other rational points of $E(\mathbb{F}_5)$ of your choice.
- (g) Indicate your choice of P_1 and P_2 and describe a basis for the Goppa code associated with (E, D) inside \mathbb{F}_5^2 (using the points P_1 and P_2).