Homework 3

Curves over finite fields, Autumn 2017, Leiden
Deadline: Monday 11 December 2017

Problem 1. Consider the curve $\mathcal{C}=\mathbb{P}^{1}$ over $\mathbb{F}_{2^{\ell}}=\left\{x_{1}, \ldots, x_{2^{\ell}}\right\}$ with coordinates $(X: Y)$. Consider the points $P_{i}=\left(x_{i}: 1\right) \in \mathcal{C}\left(\mathbb{F}_{2^{\ell}}\right)$ for $i=1, \ldots, 2^{\ell}$, and, moreover, let D be the divisor $r \cdot(1: 0)$ for some $r \geq 0$. Let C_{r} be the Goppa code associated with (\mathcal{C}, D) inside $\mathbb{F}_{2^{\ell}}^{2^{\ell}}$ (using all the P_{i}).
(a) Find the length and the minimum distance of C_{r}.
(b) Suppose that $r<2^{\ell}-1$. Prove that C_{r} is dual to $C_{2^{\ell}-r-2}$.

The function $\pi:=\frac{Y}{X} \in \mathbb{F}_{2^{\ell}}(\mathcal{C})$ has a simple zero at (1:0). For each $f \in \mathcal{L}(D)$, we can evaluate the function $f \cdot \pi^{r}$ in $P_{2^{\ell}+1}=(1: 0)$. With abuse of notation, we call this value $f((1: 0))$. Let E_{r} be obtained by extending the Goppa code C_{r} to $\mathbb{F}_{2^{\ell}}^{2^{\ell}+1}$ by putting $f((1: 0))$ on the the last coordinate, i.e. E_{r} is the image of

$$
\varphi: \mathcal{L}(D) \rightarrow \mathbb{F}_{2^{\ell}}^{2^{\ell}+1}: f \mapsto\left(f\left(P_{i}\right)\right)_{i=1}^{2^{\ell}+1}
$$

(c) Prove that E_{r} is an MDS code.

Problem 2. Do Exercise 23 from the coding theory lecture notes:
(a) Construct an isomorphism between $V \otimes W$ and the space constructed in Remark 21 of the notes.
(b) Prove that the map $\varphi: V \times W \rightarrow V \otimes W:(v, w) \mapsto v \otimes w$ is bilinear.
(c) Prove that $V \otimes W$ and φ satisfy the following universal property: for any K-vector space T and any bilinear map $\rho: V \times W \rightarrow T$ there exists a unique linear map $\eta: V \otimes W \rightarrow T$, such that the following diagram commutes (i.e. $\eta \circ \varphi=\rho$):

Problem 3. Do Exercises 40 and 41 from the coding theory lecture notes. Download your worksheet fromhttps://sage.math.leidenuniv.nl/and hand it in by e-mail. Put enough comments in your code, or hand in a separate explanation of your code with your homework solutions.
(a) Use Magma to construct an $[n, k, d]$-code using algebraic geometry with $k, d \geq 200$ and $n \leq 450$, just as we did in the lecture notes. Generate a random code word, randomly change 10 entries of the vector and try to decode the word (stop if it takes too long).
(b) Use Magma again to repeat the procedure, but this time use the specific algebraic-geometric procedures that are implemented in Magma. Look up the functions AGDualCode and AGDecode in the Magma handbook.

Problem 4. Let E be a classical elliptic curve over \mathbb{F}_{q}, i.e. a smooth projective curve inside \mathbb{P}^{2} given by a Weierstraß equation

$$
Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3} .
$$

Let $O=(0: 1: 0)$ be the chosen point on E.
(a) For each $n \in \mathbb{Z}_{\geq 0}$ give a basis for $\mathcal{L}(n \cdot O)$.
(b) Prove that E has genus 1 by using Riemann-Roch.

Now suppose that E^{\prime} is an elliptic curve over \mathbb{F}_{q}, i.e. a smooth projective curve of genus 1 , together with an \mathbb{F}_{q}-rational point O^{\prime}.
(c) Prove that there exist functions x and y in $\mathbb{F}_{q}\left(E^{\prime}\right)$, having a pole of order 2 and 3 at O^{\prime} and no other poles, respectively.
(d) Prove that the map

$$
\varphi: E^{\prime} \rightarrow \mathbb{P}^{2}: P \mapsto(x(P): y(P): 1)
$$

is well-defined and injective.
(e) Prove that the points in the image of φ satisfy an equation of the shape

$$
Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=a_{0} X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3},
$$

for some $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in \mathbb{F}_{q}$.

Problem 5. Let E be the classical elliptic curve over \mathbb{F}_{5} given by the equation $Y^{2} Z+Y Z^{2}=X^{3}+X Z^{2}$ inside \mathbb{P}^{2} with coordinates $(X: Y: Z)$. Let $P:=(0: 0: 1) \in E\left(\mathbb{F}_{5}\right)$.
(a) Compute the number of \mathbb{F}_{5}-rational points on E.
(b) Compute $2 \cdot P$ and $3 \cdot P$.
(c) Determine the order of P.

Let $Q:=(1: 1: 1) \in E\left(\mathbb{F}_{5}\right), O:=(0: 1: 0) \in E\left(\mathbb{F}_{5}\right)$ and let D be the divisor $P+Q$.
(d) Compute $\operatorname{div}\left(\left(Y^{2}+4 Y Z\right) / Z^{2}\right)$.
(e) Let $f \in \mathcal{L}(D)$. Prove that $f \cdot\left(Y^{2}+4 Y Z\right) / Z^{2} \in \mathcal{L}(6 O)$.
(f) Use this to compute a basis for $\mathcal{L}(D)$. Hint: use the results of $4(\mathrm{a})$.

Let P_{1} and P_{2} be two other rational points of $E\left(\mathbb{F}_{5}\right)$ of your choice.
(g) Indicate your choice of P_{1} and P_{2} and describe a basis for the Goppa code associated with (E, D) inside \mathbb{F}_{5}^{2} (using the points P_{1} and P_{2}).

