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Introduction

An elliptic curve over Q has good, bad additive or bad multiplicative reduc-
tion at each prime p. Each elliptic curve over Q has good reduction at almost
all prime numbers p. Though there are elliptic curves without a prime of mul-
tiplicative reduction, for example the elliptic curves given by the equations
y2 = x3 + 1 and y2 = x3 + 2x, we will prove that this rather exceptional.

Theorem 9 (p. 9). 100% of elliptic curves over Q ordered by height have at
least one prime of multiplicative reduction.

We will also prove that most occurrences of bad reduction are multiplicative.

Theorem 8 (p. 7). Let p > 4 be a prime number. The proportion of elliptic
curves over Q with multiplicative reduction at p inside the set of elliptic
curves with bad reduction at p is at least (1− 1

p
)2.

Shafarevich proved that for any finite set of primes S, only finitely many
elliptic curves over Q have good reduction outside S, cf. [14, th. 6.1, p. 293].
Moreover, it is even true that there is no elliptic curve over Q which has
everywhere good reduction. In [16] Siman Wong proved that approximately
17.9% of elliptic curves over Q are semistable, i.e., they have no primes of
additive reduction. Semistable elliptic curves are generally easier to handle
than those with additive reduction at some prime. For example, Wiles proved
the modularity theorem for semistable elliptic curves in 1995, several years
before the general result was proven.

For hyperelliptic curves over Q the situation is similar. Bad semistable reduc-
tion (see def. 19 and def. 21) is the analogue of bad multiplicative reduction
in the elliptic curve case. Grothendieck’s famous semistable reduction theo-
rem states that any curve over Q has potential semistable reduction at every
prime number p, i.e., there is a finite field extension L of Q over which the
curve has semistable reduction at the places above p. However, almost al-
ways it is the case that given a hyperelliptic curve there is a bad prime for
which we can take L to be Q. To be more precise, we will prove the following
result.

Theorem 29 (p. 21). Let g be an integer greater than 1. Then 100% of hy-
perelliptic curves over Q of genus g have at least one prime of bad semistable
reduction.
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The results will be proven by counting Weierstraß equations for which the
discriminant is divisible exactly once by p. In the process of counting such
equations we will use the Lang-Weil estimates and the properties of étale
morphisms between schemes. Furthermore, we will use a sieve method to
count points satisfying a number of congruence conditions. Sieving is a stan-
dard technique in number theory. For example, a similar sieve was used to
prove Brun’s theorem, that states that the sum of the reciprocals of the twin
primes converges to a finite value.

Given a hyperelliptic curve one can consider its Jacobian. It is an abelian
variety. Semi-abelian reduction for abelian varieties (see def. 43) is the ana-
logue of semistable reduction for curves. The semistable reduction theorem
also holds in this case, i.e., for any abelian variety over Q and any prime p
there is a finite field extension L of Q over which the variety has semi-abelian
reduction at all places of L above p. In the last chapter we will prove the
following theorem.

Theorem 46 (p. 27). Let C be a hyperelliptic curve of genus g > 2 over Q
and let p be an odd prime number. Suppose that we have a Weierstraß model
of C over Z(p) for which the discriminant is divisible exactly once by p. Then
the Jacobian of C has semi-abelian reduction of toric rank 1 at p.

By combining the results of corollary 28 and theorem 46, we get the following
result.

Corollary 1. 100% of Jacobians of hyperelliptic curves over Q have at least
one prime of semi-abelian reduction of toric rank 1.

To conclude, I would like to thank my advisor David Holmes for his contin-
uing support during the last semester. Furthermore, I would like to thank
Bas Edixhoven for the insightful conversations that helped me to solve many
of my problems.
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1 Counting elliptic curves with a bad semistable

prime

In this chapter we are going to look at elliptic curves over Q that have bad
semistable, i.e. multiplicative, reduction at some prime p. We will prove that
a proportion that is approximately (1 − 1

p
)2 of the elliptic curves that have

bad reduction at p have bad semistable reduction at p. Furthermore, we will
prove that 100% of elliptic curves have at least one prime of bad semistable
reduction.

First of all let us define some notation that is frequently used.

Definition 2. Let S = SpecA be an affine scheme and let n be an in-
teger. Then the affine space An

S = Spec (A[x1, . . . , xn]) is sometimes de-
noted by An

S(x1, . . . , xn) to indicate that the coordinates are called x1, . . . , xn.
The projective space PnS = Proj (A[x0, . . . , xn]) is sometimes denoted by
PnS(x0 : . . . : xn) to indicate that the coordinates are called x0, . . . , xn.

Definition 3. Let S be a scheme and let X be a scheme over S. Then X/S
is called projective if it is projective in the sense of [7], i.e., if X is isomorphic
over S to a closed subscheme of PnS for some non-negative integer n.

Lemma 4. Let S be a scheme and X/S be an open subscheme of An
S. Suppose

that ∆ ⊂ X is a hypersurface1 that is smooth over S. Let p ∈ ∆. Then there
exists an open neighbourhood U ⊂ X of p such that there exists a commutative
diagram

∆×X U
π1 //

��

An−1
S

��
U

π2 // An
S

,

where An−1
S → An

S is the map (s1, . . . , sn−1) 7→ (s1, . . . , sn−1, 0), such that π1

and π2 are étale.

Proof. The question is local, hence we may and do assume that S is affine, say
S = SpecA, and that X = D(g) ⊂ An

S(x1, . . . , xn) for some g ∈ A[x1, . . . , xn].
Furthermore, let f ∈ A[x1, . . . , xn] be such that ∆ = Z(f) ⊂ X. Let
B := A[x1, . . . , xn+1]/(f, xn+1 · g − 1), then ∆ = SpecB.

Now the module of differentials Ω∆/S is the quotient of the free B-module
generated by dx1, . . . , dxn by the relation 0 = df =

∑n
i=1 fidxi, where

1this means: globally cut out by one regular element
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fi = ∂f
∂xi
∈ B. As ∆/S is smooth, the module Ω∆/S is locally free of rank

n− 1, by [15, tag 02G1]. Hence, one of the fi does not vanish at p, suppose
w.l.o.g., by swapping coordinates if necessary, that fn does not vanish.

Then take U = D(fn) ⊂ X, it contains p. Next we define π1 to be the
projection on the first n− 1 coordinates, i.e. the morphism that corresponds
to the ring morphism

A[b1, . . . , bn−1]→ A[b1, . . . , bn−1, x1, . . . , xn+1]

(x1 − b1, . . . , xn−1 − bn−1, f, xn+1 · gfn − 1)
∼= Bfn

bi 7→ xi.

The Jacobian determinant det(∂hi/∂xj)
n+1
i,j=1, where hi = xi − bi for i < n,

and hn = f and hn+1 = xn+1gfn− 1, is equal to f 2
n · g, which is a unit in Bfn .

Hence, by [15, tag 02GU], the map π1 is étale.

Furthermore, we define π2 as the morphism that is the projection on the
first n− 1 coordinates and f on the last coordinate, i.e. the morphism that
corresponds to the ring morphism

A[a1, . . . , an]→ A[a1, . . . , an, x1, . . . , xn+1]

(x1 − a1, . . . , xn−1 − an−1, f − an, xn+1 · gfn − 1)
∼= Afn

ai 7→

{
xi if i 6 n− 1

f if i = n.

The Jacobian determinant det(∂zi/∂xj)
n+1
i,j=1, where zi = xi − ai for i < n,

and zn = f − an and zn+1 = xn+1gfn − 1, is equal to gf 2
n, which is a unit in

Afn . Hence, by [15, tag 02GU] again, the map π2 is étale. It is easy to see
that π1 and π2 make the diagram commute.

We can apply Lemma 4 to count Z/p2Z-points in varieties, where p is a prime
number.

Lemma 5. Let N, n ∈ Z>0 be positive integers, let p be a prime number not
dividing N and let f ∈ Z[1/N, x1, . . . , xn]. Let X be an open subscheme of
An
S(x1, . . . , xn), where S = Spec(Z[1/N ]). For i = 0, . . . , p − 1, let Hi be

the hypersurfaces in X given by the equation f − ip = 0. Suppose that Hi is
smooth over S for each i ∈ {0, . . . , p−1}. Then for every i = 0, . . . , p−1 and
every point (r1, . . . , rn) ∈ H0(Fp) there exist exactly pn−1 lifts in Hi(Z/p2Z).

Proof. Let r = (r1, . . . , rn) ∈ H0(Fp) be an arbitrary point. Remark that
there is a canonical one-to-one correspondence between H0(Fp) and Hi(Fp),
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hence we will consider r as point of Hi(Fp). Let P be the closed point of Hi

corresponding to this point. Apply lemma 4 to this point P to find an open
neighbourhood U of P ∈ X and π1 : Hi ×X U → An−1

S with π1 étale.

SpecFp

��

// Hi ×X U

��
SpecZ/p2Z

77pppppp
// An−1

S

As π1 is étale, it is also formally étale. Hence, every pair of an element
of Hi(Fp) ×X(Fp) U(Fp) and an element of An−1

S (Z/p2Z) = (Z/p2Z)n−1 that
are compatible via π1 and the reduction map An−1

S (Z/p2Z)→ An−1
S (Fp) will

give rise to a unique point of Hi(Z/p2Z) ×X(Z/p2Z) U(Z/p2Z). Furthermore,
every element of Hi(Z/p2Z) ×X(Z/p2Z) U(Z/p2Z) gives rise to an element of
Hi(Fp) ×X(Fp) U(Fp) and an element of An−1

S (Z/p2Z), i.e. there is a one-to-
one correspondence. Remark that the number of points of (Z/p2Z)n−1 that
reduce to π1(r) is pn−1. In other words, every element of Hi(Fp)×X(Fp)U(Fp)
has exactly pn−1 lifts in Hi(Z/p2Z)×X(Z/p2Z) U(Z/p2Z).

We conclude by proving for R = SpecFp and R = SpecZ/p2Z that elements
of Hi(R) ×X(R) U(R) whose image is P canonically correspond to elements
of Hi(R) whose image is P . For this, remark that Hi×X U → Hi×XX = Hi

is an open immersion as open immersions are stable under base change.
For an open immersion the mentioned property is clear: for every map
ϕ : R → Hi ×X X there is a unique map R → Hi ×X U which is given
on sheaves by restricting ϕ.

For the next part we consider the map

Z2 \ {(a, b) : 4a3 + 27b2 = 0} → {elliptic curves over Q}

mapping (a, b) to the curve given by y2 = x3 + ax+ b. Every elliptic curve is
isomorphic to one of these curves. From [14, table 3.1, p. 45] it follows that
two pairs (a, b) and (c, d) give rise to isomorphic curves over Q if and only if
there exists an f ∈ Q∗ such that c = f 4a and d = f 6b. Hence, we consider
the subset L of Z2 consisting of these pairs (a, b) such that 4a3 + 27b2 6= 0
and such that there does not exist a prime p such that p4 | a and p6 | b. Then
each isomorphism class of elliptic curves over Q corresponds to exactly one
element of L. Furthermore, for B ∈ R let LB := {P ∈ L : h(P ) 6 B} for the
height function h defined by h((a, b)) = max{|a|, |b|}.

Proposition 6. Let p > 4 be a prime number. Then there are p elements
(a, b) ∈ F2

p such that 4a3 + 27b2 = 0.
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Proof. First of all remark that (0, 0) is a solution. If (a, b) is a non-zero
solution, then both a and b are non-zero and we can consider λ = a

b
∈ F∗p.

Then the equation becomes 0 = 4a3 + 27b2 = a2(4a+ 27λ2) = 0. Hence, for
each λ ∈ F∗p there is a unique a ∈ F∗p such that (a, λ · a) is a solution, namely
a = −27

4
λ2. Therefore, there are p solutions in F2

p to the equation.

Lemma 7. Let p > 4 be a prime number. Then there are p(p − 1)2 pairs
(a, b) in (Z/p2Z)2 such that 4a3 + 27b2 ∈ pZ/p2Z \ {0} and there are 2p2− p
pairs with 4a3 + 27b2 = 0 ∈ Z/p2Z.

Proof. For this proof we will count the points (a, b) ∈ (Z/p2Z)2 satisfying
∆(a, b) := 4a3 + 27b2 = 0 ∈ Z/p2Z and points with ∆(a, b) ∈ pZ/p2Z \ {0}.
First we are going to define some schemes.

Consider the hypersurfaces ∆′k := Z(∆(a, b) − kp) ⊂ A2
Z[1/6](a, b) where

k = 0, . . . , p − 1. As they are not smooth, we intersect them with the open
subscheme T := D+(a) ∪D+(b) ⊂ A2

Z[1/6](a, b) to get hypersurfaces ∆k of T .

The hypersurfaces are smooth over S := Spec(Z[1/6]) (as either 3 · 64 · a2 or
−32 · 27 · b2 is a unit) and hence they satisfy the conditions of lemma 5.

For every non-zero pair (a′, b′) ∈ F2
p with ∆(a′, b′) = 0 we find a point in

∆′0(Fp). By proposition 6 there are p − 1 such non-zero pairs (a′, b′). By
lemma 5 for every k = 0, . . . , p−1 there are p lifts (a, b) ∈ (Z/p2Z)2 of (a′, b′)
such that ∆(a, b) = kp. For the point (0, 0) ∈ F2

p all lifts (a, b) ∈ (Z/p2Z)2

satisfy ∆(a, b) = 0. In total we found p(p− 1)2 points (a, b) with ∆(a, b) ≡ 0
mod p and ∆(a, b) 6= 0 ∈ Z/p2Z and p2 + (p − 1)p = 2p2 − p points with
∆(a, b) = 0.

Theorem 8. Let p > 4 be a prime number. For every B ∈ R let ZB ⊂ LB
be the subsets of pairs corresponding to elliptic curves with bad reduction at p
and let SB ⊂ ZB be the subsets of pairs corresponding to elliptic curves with
multiplicative reduction (also called bad semistable reduction) at p. Then
lim infB→∞ |SB|/|ZB| > (1− 1

p
)2.

Proof. Let B ∈ R and let k be a positive integer. The main part of the proof
of this theorem consists of giving a lower bound for |SB| and an upper bound
for |ZB|. Let p1, p2, . . . be the prime numbers not equal to p in increasing
order. Let mk =

∏k
i=1 p

4
i , Mk = p2 ·mk, nk =

∏k
i=1 p

6
i and Nk = p2 · nk.

Note that the curves corresponding to (a, b) ∈ L have bad reduction at p if
and only if ∆(a, b) ≡ 0 mod p. First we consider the elements (a, b) ∈ L with
∆(a, b) ≡ p, 2p, . . . , p2 − p mod p2. Such elements have the property that
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∆(a, b) is divisible by p but not by p2. Then the corresponding elliptic curves
have multiplicative reduction at p, i.e., they have bad semistable reduction
at p. We will give a lower bound on the number of such elements and hence
a lower bound on |SB|.

Let Q be the largest integer multiple of Mk strictly smaller than B and let
R be the largest integer multiple of Nk strictly smaller than B. Then in
IB := {−bBc, . . . , bBc} every residue class of Z/MkZ (resp. Z/NkZ) has at
least 2Q

Mk
(resp. 2R

Nk
) representatives. Hence every pair of residue classes in

Z/MkZ× Z/NkZ has at least 4QR
MkNk

representatives in IB × IB.

In IB × IB we consider the subset Ω consisting of pairs (a, b) such that
∆(a, b) ≡ p, . . . , or p2 − p mod p2 and (a, b) 6= (0, 0) ∈ Z/p4

iZ × Z/p6
iZ for

all i = 1, . . . , k. Denote by W :=
∏k

i=1(p10
i − 1) the number of elements in

Z/nkZ × Z/mkZ satisfying the latter conditions modulo pi for i = 1, . . . , k.
The number of elements in Z/p2Z satisfying the first condition is p(p − 1)2

according to theorem 7. Then the number of elements in Z/NkZ × Z/MkZ
satisfying all the conditions is W ·p(p−1)2 by the Chinese remainder theorem.
Hence, there are at least Wp(p− 1)2 · 4QR

MkNk
elements in Ω.

However, not all elements (a, b) of Ω will necessarily be elements of L. The
conditions imply that ∆(a, b) 6= 0 for such pairs, however, there might still

exist a prime q satisfying pk < q 6 B
1
4 such that q4 | a and q6 | b. We will give

an upper bound on the number of elements in Ω for which such a prime q ex-
ists. We consider the reduction of the elements of Ω in Z/Mkq

4Z×Z/Nkq
6Z.

In IB every residue class modulo Mkq
4 resp. Nkq

6 has at most 2 Q
Mkq4

+ 4

resp. 2 R
Nkq6

+ 4 representatives. Of the MkNk classes that reduce to 0 in

Z/q4Z× Z/q6Z only Wp(p− 1)2 occur in Ω by the Chinese remainder theo-
rem. Hence, there are at most Wp(p− 1)2 · (2 Q

Mkq4
+ 4)(2 R

Nkq6
+ 4) elements

in Ω such that q4 | a and q6 | b. Now we want to find an upper bound on the
sum

∑
q(

2Q
Mkq4

+ 4)( 2R
Nkq6

+ 4).

We can bound
∑

q
1
qj

for j = 4, 6, 10 by
∫∞
pk

1
xj
dx = 1

(j−1)pj−1
k

and
∑

q 1 by B
1
4 .

We find that the sum we wanted to bound is at most

4QR

9MkNkp9
k

+
8Q

3Mkp3
k

+
8R

5Nkp5
k

+ 16B
1
4 =

4QR

MkNk

·
(

1

9p9
k

+ ε(B)

)
where ε(B) = O(B−1) as we will let B → ∞. The lower bound for the
number of elements in SB now becomes Wp(p− 1)2 · 4QR

MkNk
(1− 1

9p9k
− ε(B)).

On the other hand to find an upper bound for ZB we first notice that each
class of Z/MkZ×Z/NkZ has at most ( 2Q

Mk
+ 4)( 2R

Nk
+ 4) representatives in IB.
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There areW ·p3 classes (a, b) in Z/MkZ×Z/NkZ such that ∆(a, b) ≡ 0 mod p
and (a, b) 6= (0, 0) ∈ Z/p4

iZ × Z/p6
iZ for all i = 1, . . . , k. We immediately

find the upper bound Wp3 · ( 2Q
Mk

+ 4)( 2R
Nk

+ 4) for |ZB|.

Finally we conclude that the quotient |SB |
|ZB |

is bounded from below by(
1− 1

p

)2(
1− 2Nk

R + 2Nk

)(
1− 2Mk

Q+ 2Mk

)(
1− 1

9p9
k

− ε(B)

)
=

(
1− 1

p

)2(
1− 1

9p9
k

)
+O(B−1).

Hence, lim infB→∞
|SB |
|ZB |

> (1− 1
p
)2(1− 1

9p9k
) for all k ∈ N. The result follows

now as 1
9p9k
→ 0 as k →∞.

Theorem 9. For each B ∈ R let QB ⊂ LB be the subset of pairs correspond-
ing to elliptic curves without a prime of semistable bad reduction. Then
lim supB→∞

|QB |
|LB |

= 0.

Proof. Let p1, p2, . . . be the prime numbers ordered in the natural way and
let k > 3 be an integer. Let Mk =

∏k
i=1 p

4
i and Nk =

∏k
i=1 p

6
i . For a fixed

B ∈ R>0 let IB := {−bBc, . . . , bBc}. Let Q and R be the largest integer
multiples of Mk, resp. Nk, smaller than B. In IB× IB we consider the subset
Ω of pairs (a, b) such that ∆(a, b) ≡ p, 2p, . . . , or p2 − p mod p2 for some
p ∈ {p3, . . . , pk} and (a, b) 6≡ (0, 0) ∈ Z/p4Z×Z/p6Z for all p ∈ {p1, . . . , pk}.

There are
∏k

i=1(p10
i − 1) classes (a, b) ∈ Z/Mk × Z/Nk that satisfy the latter

condition that (a, b) 6≡ (0, 0) ∈ Z/p4Z × Z/p6Z for all p ∈ {p1, . . . , pk}.
By lemma 7, for each p ∈ {p3, . . . , pk} there are p4 − (p − 1)2p classes
(a, b) ∈ Z/p2Z × Z/p2Z such that ∆(a, b) 6≡ p, 2p, . . . , or p2 − p mod p2.
Hence, there are p10− 1− (p− 1)2p7 non-zero classes (a, b) ∈ Z/p4Z×Z/p6Z
satisfying this condition (remark that 0 did satisfy the condition). Therefore,
there are

W1 :=
k∏
i=1

(p10
i − 1)− (210 − 1)(310 − 1)

k∏
i=3

(p10
i − 1− (pi − 1)2p7

i )

classes (a, b) in Z/MkZ×Z/NkZ such that for each of these pairs there is at
least one p ∈ {p3, . . . , pk} such that ∆(a, b) ≡ p, 2p, . . . , or p2 − p mod p2.

Each residue class of Z/MkZ × Z/NkZ has at least 4QR
MkNk

representatives in

IB × IB and hence Ω contains at least 4QR
MkNk

W1 elements. However, not all
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of them lie in L, for some pairs (a, b) ∈ Ω there might still exist a prime q

satisfying pk < q 6 Q
1
4 such that q4 | a and q6 | b. In the same way as in the

previous proof we will find that there are at most
∑

qW1 ·( 2Q
Mkq4

+4)( 2R
Nkq6

+4)

such elements. Hence, the sum will be bounded by W1 · 4QR
MkNk

· ( 1
9p9k

+ ε(B))

as before. Hence, |LB ∩Ω| > W1 · 4QR
MkNk

· (1− 1
9p9k
− ε(B)). As every curve in

LB ∩ Ω has bad semistable reduction at p3, . . . , or pk, this also provides for
a lower bound for |LB \QB|.

On the other hand, we consider the subset Λ of IB × IB of elements (a, b)
such that there exists no prime number p such that both p4 | a and p6 | b.
By the Chinese remainder theorem there are W2 :=

∏k
i=1(p10

i − 1) classes
(a, b) ∈ Z/MkZ×Z/NkZ satisfying this condition. Furthermore, each repre-
sentative class has at most ( 2Q

Mk
+ 4)( 2R

Nk
+ 4) representatives in IB × IB. In

this way, we find the upper bound |LB| 6 W2 · ( 2Q
Mk

+ 4)( 2R
Nk

+ 4).

Now we conclude that

|LB \QB|
|LB|

>
W1

W2

(
1− 2Nk

R + 2Nk

)(
1− 2MK

Q+ 2MK

)(
1− 1

9p9
k

− ε(B)

)
=
W1

W2

(
1− 1

9p9
k

)
+O

(
1

B

)
.

In particular 1− lim supB→∞
|QB |
|LB |

= lim infB→∞
|LB\QB |
|LB |

> W1

W2
(1− 1

9p9k
). Now

it suffices to show that limk→∞
W1

W2
(1− 1

9p9k
) = 1. Remark that

W1

W2

= 1−
k∏
i=3

(
1− (pi − 1)2p7

i

p10
i − 1

)
.

Surely the product limk→∞(1− W1

W2
) converges to some number in [0, 1]. Sup-

pose that it is non-zero. Then the infinite product would converge to a non-
zero number and the convergence criterium for infinite product (see for exam-

ple [8, th. 4, p. 220]) would tell us that
∑M

i=1
(pi−1)2p7i
p10i −1

converges as M →∞.

Then also
∑M

i=1
1
pi

must converge as M → ∞, because
(pi−1)2p7i
p10i −1

∼ 1
pi

as

i → ∞. However, by the prime number theorem we have pi ∼ i log i, hence
also

∑M
i=2 1/(i log i) must converge as M → ∞. This, however, is false as∫M

2
di/(i log i) = log logM − log log 2 does not converge as M →∞. We get

a contradiction and hence the product converges to 0.
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2 Counting hyperelliptic curves with a bad

semistable prime

In this chapter we will prove a result for hyperelliptic curves of a similar
form to our result for elliptic curves in the previous chapter. The following
proposition will help us to generalise the sufficient criterion for semistable
reduction that we had for elliptic curves to the case of hyperelliptic curves.
This proposition is a classical corollary of Hensel’s lemma. However, we will
give a proof for this proposition in the language of algebraic geometry.

Proposition 10. Let k be a field of characteristic not equal to 2. Let a ∈ k
and let f ∈ k[x] be such that f(a) is a non-zero square. Then there exists a
g ∈ k[[x− a]] such that f = g2 ∈ k[[x− a]].

Proof. Let R = k[[x − a]], and let ψ : R → R[t]/(t2 − f) be the natural
morphism. Remark that 2 ∈ k∗ and f ∈ k[[x− a]]∗ as k[[x− a]] is a discrete

valuation ring and f /∈ (x − a) · k[[x − a]]. Hence, ∂(t2−f)
∂t

= 2t is a unit in
R[t]/(t2− f), because 2 and t2 = f are units. Hence, ψ is standard étale. In
particular, it is formally étale.

Spec
(

R
(x−a)

)
//

��

Spec
(

R[t]
(t2−f)

)
��

Spec
(

R
(x−a)2

)
//

77pppppp

SpecR

Let b1 ∈ k be such that 0 = b2
1 − a = b2

1 − f in R/(x − a), which exists
because a is assumed to be a square. Then, by the fact that ψ is formally
étale, there is a unique b2 ∈ R/(x − a)2 such that b2 = b1 ∈ R/(x − a)
and b2

2 − f = 0 ∈ R/(x − a)2. Applying this again, we find an element
b3 ∈ R/(x − a)3, restricting to b2 such that b2

3 − f = 0 ∈ R/(x − a)3, et
cetera. Now let g = limn→∞ bn. then g2 − f = 0 ∈ R and we are done.

Lemma 11. Let k be a field of characteristic not equal to 2 and let f ∈ k[x]
be a non-zero polynomial. Let C be the scheme Z(y2 − f) ⊂ A2

k(x, y). Let

p = (px, py) ∈ k
2

be a closed point of Ck. If py 6= 0 or px is a single zero of
f , then Ck is smooth at p. If px is a zero of order two of f , then p is an

ordinary double point, i.e. ÔCk,p
∼= k[[T1, T2]]/(T1T2).

11



Proof. To see that Ck is smooth at p use the Jacobian criterion: ∂y2

∂y
(p) = 0

if and only if py = 0 if and only if f(px) = 0 and in this case ∂f
∂x

(px) = 0 if
and only if px is a zero with multiplicity higher than 1 of f . Hence, Ck is
smooth at p, if py 6= 0 or px is a single zero of f .

Now suppose that px is a double zero. Write f = (x − px)
2g for some

g ∈ k[x]. Then g(px) 6= 0, hence g = h2 for some h ∈ k[[x − px]] by
proposition 10. Hence, the completed local ring of Ck at p is isomorphic
to k[[x − px, y]]/(y − (x − px)h)(y + (x − px)h) ∼= k[[a, b]]/(ab) by taking
a = y − (x − px)h and b = y + (x − px)h, cf. [12, p. 506]. Furthermore
Ck is reduced as f is non-zero and hence y2 − f has no irreducible factors
with multiplicity higher than 1 in its factorisation. This proves that p is an
ordinary double point of Ck.

Next we will give the definition of a weighted projective space.

Definition 12. Let R be a ring, let n be a non-negative integer and let
w0, . . . , wn be positive integers. Then the weighted projective space over R
with weights w0, . . . , wn is the scheme PR(w0, . . . , wn) := Proj(R[x0, . . . , xn]),
where the grading of R[x0, . . . , xn] is such that xi is homogeneous of degree
wi for i = 0, . . . , n. Sometimes we denote it by PR(w0, . . . , wn)(x0 : . . . : xn)
to indicate that the coordinates are called x0, . . . , xn.

Example 13. Let n > 0 and w > 0 be integers. Let R be a ring. Then
PR(w, . . . , w)(x0 : . . . : xn) is isomorphic to PnR. The standard opens D+(xi)
are the spectra of the rings R[x0, . . . , xn](xi) = R[x0x

−1
i , . . . , xnx

−1
i ], and they

glue to PR(w, . . . , w) independently of w.

Example 14. Let g > 1 be an integer and let R be a ring. Then the weighted
projective space PR(1, 1, g + 1)(x : s : y) is covered by the three standard
opens D+(x), D+(s) and D+(y). As R[x, s, y](x) = R[sx−1, yx−g−1], we have
that D+(x) is isomorphic to A2

R. Analogously D+(s) is isomorphic to A2
R.

However, one can check that the R-algebra

R[x, s, y](y) = R[xg+1y−1, xgs1y−1, . . . , sg+1y−1]

cannot be generated by two elements, hence D+(y) is not isomorphic to A2
R.

Lemma 15. Let R be a noetherian ring, let n be a non-negative integer
and let w0, . . . , wn be positive integers. Then the weighted projective space
W := PR(w0, . . . , wn)(x0 : . . . : xn) is projective over SpecR.

12



Proof. Let w =
∏n

i=0wi. Give R[y0, . . . , yn] the structure of a graded R-
algebra by letting y0, . . . , yn be of degree w. Consider the graded R-algebra
homomorphism R[y0, . . . , yn]→ R[x0, . . . , xn] defined by yi 7→ x

w/wi

i . As the

D+(x
w/wi

i ) = D+(xi) cover W , this morphism of graded R-algebras induces
a morphism of schemes ϕ : W → P := PnR(w, . . . , w)(y0 : . . . yn) by [15, tag
01MY].

Remark that R[x0, . . . , xn] is a finite R[y0, . . . , yn]-module, as it is generated
by the monomials of the form xe00 · . . . · xenn with e0 ∈ {0, . . . , ww0

− 1}, . . . ,
en ∈ {0, . . . , w

wn
−1}. In particular R[x0, . . . , xn](xi) is a finite R[y0, . . . , yn](yi)-

module for all i = 0, . . . , n and the morphism ϕ is finite. Hence, by example
13 there is a finite morphism ψ : W → PnR.

On PnR we have the ample sheaf L := OPn
R

(1). Now let G be a coherent
sheaf on W . By [15, tag 01Y6], ψ∗G is a coherent sheaf on PnR. Hence,
by [7, prop. III.5.3, p. 229], there exists an integer n0, such that for each
i > 0 and each n > n0 we have H i(PnR, ψ∗G ⊗ Ln) = 0. Now Ln is a locally
free sheaf and the projection formule (see for example [15, tag 01E8]) yields
ψ∗G ⊗ Ln ∼= ψ∗(G ⊗ ψ∗(Ln)). Remark that W and PnR are noetherian and
separated over SpecR. Hence, we can use Čech cohomology to conclude that
0 = H i(PnR, ψ∗(G⊗ψ∗(Ln))) ∼= H i(W,G⊗ψ∗(Ln)). As ψ∗(Ln) ∼= (ψ∗L)n, this
yields that L is ample, by using [7, prop. III.5.3, p. 229] again. In particular
W is projective over SpecR.

Let g > 1 be an integer. We are considering curves of the following form over
Q: Z(y2− f(x, s)) ⊂ PQ(1, 1, g+ 1)(x : s : y) where f(x, s) is a homogeneous
polynomial of degree n := 2g + 2 with coefficients in Z and without double
zeros (in P1

C). We will let f vary over the set of such polynomials.

First, we let S = Spec(Z[1
2
]). Consider the scheme H = An+1

S (c0, . . . , cn).
It represents the functor that maps a Z[1

2
]-algebra R to the set of homo-

geneous polynomials in two variables x and s of degree n with coefficients
in R, that is, for each Z[1

2
]-algebra R the set H(R) is identified with set

{
∑n

i=0 cix
isn−i ∈ R[x, s]}.

Definition 16. Let R be a ring. The discriminant ∆(f) of a polynomial
f =

∑n
i=0 cix

isn−i is defined as the determinant of the modified Sylvester
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matrix

Mf :=



z cn−1 cn−2 . . . 0 0 0
0 cn cn−1 . . . 0 0 0
0 0 cn . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . c1 c0 0
0 0 0 . . . c2 c1 c0

zn (n− 1)cn−1 (n− 2)cn−2 . . . 0 0 0
0 ncn (n− 1)cn−1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 2c2 1c1 0
0 0 0 . . . 3c3 2c2 1c1



,

where z = (−1)
n(n−1)

2 , the first n − 1 rows contain the coefficients of f(x, 1)
and the last n rows contain the coefficients of ∂f

∂x
(x, 1).

One easily sees that the discriminant ∆(f) can be expressed as a polynomial
in Z[c0, . . . , cn], which we will denote by ∆.

Proposition 17. Let k be a field and suppose that the homogeneous polyno-
mial f =

∑n
i=0 cix

isn−i ∈ k[x, s] factors as
∏n

j=1(αjx− βjs) ∈ k[x, s]. Then

∆(f) =
∏

j<`(α`βj − αjβ`)2.

Proof. As the equality that we need to prove is an algebraic one it suffices to
prove it on the Zariski dense subset

⋂n
j=1D(αj) of A2n

k
(α1, . . . , αn, β1, . . . , βn).

Now f(x, 1) factors as a
∏n

j=1(x−γj) where a =
∏n

j=1 αj and γj =
βj
αj

. By the

theory of discriminants on univariate polynomials (see for example [10, prop.
8.5, p. 204]) we know that ∆(f) = a2n−2

∏
j<`(γj−γ`)2 =

∏
j<`(α`βj−αjβ`)2.

First we will define what it means for a hyperelliptic curve to have good, bad
and semistable reduction.

Definition 18. For a scheme X/ SpecQ and a ring Z ⊂ R ⊂ Q we define
an R-model of X to be a scheme X/ SpecR together with an isomorphism
Xη
∼= X, where η is the generic point of SpecR. We say that the model is

proper/projective/flat/smooth/normal if X/ SpecR is.

Definition 19. Let X/ SpecQ be a proper smooth scheme and let p ∈ Z be
a prime number. Then we say that X has good reduction at p if there exists
a proper smooth Z(p)-model X of X. We say that X has bad reduction at p
if it does not have good reduction.

14



Definition 20. Let k be a field and let C/ Spec k be a scheme, locally
of finite type, whose irrreducible components are of dimension 1. We call
C semistable if Ck is reduced and if its singular points are ordinary dou-
ble points, i.e., for every singular point x ∈ Ck there is an isomorphism

ÔCk,x
∼= k[[T1, T2]]/(T1T2).

Definition 21. Let X/ SpecQ be a smooth projective scheme of dimension
1 and let p ∈ Z be a prime number. Then we say that X has semistable
reduction at p if there exists a proper flat Z(p)-model X of X such that
(X×SpecZ(p)

SpecFp)/ SpecFp is semistable.

Theorem 22. Let g be a positive integer and let f(x, s) ∈ Z[x, s] be a ho-
mogeneous polynomial of degree n = 2g + 2. Let C be the scheme given by
y2 = f(x, s) inside PQ(1, 1, g + 1)(x : s : y). Let p be an odd prime. If
p - ∆(f), then C has good reduction at p. If p | ∆(f) and p2 - ∆(f), then C
has semistable bad reduction at p.

Proof. First consider the model C = Z(y2− f(x, s)) of C inside the weighted
projective space PZ(p)

(1, 1, g+1)(x : s : y) over Z(p). It is weighted projective,
hence it is projective by lemma 15. We will check that C is flat over Z(p).
As there are no points on C with x = s = 0, it suffices to consider the
affine open D+(s) ∩ C ⊂ C (the other affine open D+(x) ∩ C can be treated
analogously). This affine open is isomorphic to Z(y2 − f(x, 1)) ⊂ A2

Z(p)
(x, y)

just like in example 14. The Z(p)-module Z(p)[x, y]/(y2− f(x, 1)) is free with
basis {xiyj : (i, j) ∈ Z>0 × {0, 1}}, in particular it is flat.

Now, by proposition 17, f(x, 1) ∈ Fp[x] has no double zeros in Fp if p - ∆. If
p | ∆ and p2 - ∆, then f has exactly one double zero and no zeros of higher
order by the same proposition. Applying lemma 11 we find that C is smooth
if p - ∆(f) and it is semistable if p | ∆(f) and p2 - ∆(f). In particular this
proves the first part of the theorem. To prove that C has bad reduction at p
in the latter case, we need to check that every other proper flat model is not
smooth.

Suppose on the contrary that there does exist a proper smooth model C of
C. Because SpecZ(p) is a regular noetherian scheme and C → SpecZ(p) is
a smooth morphism, C is regular by [12, th. 3.36, p. 142]. In particular the
connected components of C are normal by [12, th. 2.17, p. 130]. Furthermore,
C → SpecZ(p) is flat, its generic fibre is integral, as it is isomorphic to
Z(y2 − f(x, s)) ⊂ PQ(1, 1, g + 1)(x : s : y), and SpecZ(p) is integral. Hence,
[12, prop. 3.8, p. 137] yields that C is integral. Hence, it is connected and it
is normal.
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Now let p be an odd prime number. Inside H = An+1
S (c0, . . . , cn) we consider

the closed subschemes Hi := Z(∆− ip) ⊂ H for i = 0, . . . , p−1. Let Si ⊂ Hi

be the smooth locus of the map Hi → S, it is an open subscheme of Hi. Let
Ni := Hi \Si be its complement with the induced reduced scheme structure.

Proposition 23. Let k be a field of characteristic not two. Then, the scheme
H0 ×S Spec k is irreducible.

Proof. Consider the map from A2n
k

to H ×S Spec k mapping the 2n-tuple
(α1, β1, . . . , αn, βn) to the polynomial (α1x − β1s) · . . . · (αnx − βns). Over
k every univariate polynomial factors in linear factors and therefore every
bivariate homogeneous polynomial factors in linear factors. Hence, this map
is surjective.

Inside A2n
k

consider the closed subscheme given by {α1 = α2 ∧ β1 = β2}.
It is irreducible and by applying proposition 17 we see that it surjects onto
H0 ×S Spec k. As the image of an irreducible set is irreducible this proves
that H0 ×S Spec k is irreducible.

Lemma 24. The scheme H0 has a smooth point which lies in the fibre of
SpecFp ⊂ S.

Proof. Let
∑n−2

i=0 hi+2x
i ∈ Fp[x] be a separable polynomial of degree n − 2

not divisible by x, e.g. the minimal polynomial of a non-zero generator of
Fpn−2/Fp. Then consider the point P ∈ H0 representing the homogeneous
polynomial h =

∑n
i=2 hix

isn−i ∈ Fp[x, s] in H0. Then the claim is that P is
a smooth point of H0.

To prove the latter we will calculate the tangent space at P of H0 and H. The
tangent space can be identified to the set of morphisms ρ from Spec (Fp[ε]/ε2)
to H0 resp. H such that the image of ρ is P . That is, the tangent space of
H at P consists of polynomials f =

∑n
i=0 fix

isn−i ∈ Fp[ε, x, s]/ε2 such that
the reduction f ∈ Fp[x, s] is equal to h. The tangent space of H0 at P is the
subspace consisting of these polynomials f that satisfy ∆(f) = 0. We will
prove that this subspace has codimension 1. As P is a smooth point of H,
this will immediately prove that P is a smooth point in the fibre above p of
H0.
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Consider the modified Sylvester matrix of f , where z = (−1)
n(n−1)

2 :

z fn−1 fn−2 . . . 0 0 0
0 fn fn−1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . f1 f0 0
0 0 0 . . . f2 f1 f0

zn (n− 1)fn−1 (n− 2)fn−2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 2f2 f1 0
0 0 0 . . . 3f3 2f2 f1


Now, we are going to calculate its determinant by expanding at the rightmost
column. Remark that f0 and f1 will be multiples of ε as h is a multiple of
x2. For this reason, the contribution from the bottom entry in the rightmost
column, f1, will be zero, as all entries except the bottom entry of the second
rightmost column are also multiples of ε. Hence, we only get a non-zero
contribution from the n-th entry of the rightmost column, f0. If we then
expand the residual matrix in the rightmost column, we see that we only
get a non-zero contribution from the bottom entry, 2f2. To summarize, the
determinant of the matrix is equal to

τ := (−1)(2n−1)+(n−1)+(2n−2)+(2n−2) · 2f1f2 · detM = (−1)n · 2f1f2 · detM,

where

M =



z fn−1 fn−2 . . . 0 0
0 fn fn−1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . f1 0
0 0 0 . . . f2 f1

zn (n− 1)fn−1 (n− 2)fn−2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2f2 0
0 0 0 . . . 3f3 2f2


As f1 is a multiple of ε, we get that τ = (−1)n · 2f1h2 · detM , where M is
the reduction of M to Fp. Remark, that by subtracting the first row from
the n-th row in M , the second row from the n+ 1-st row, the third row from
the n+ 2-nd row, and so on, we get the following matrix, where we define h1
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to be zero.

z hn−1 hn−2 . . . 0 0
0 hn hn−1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . h1 0
0 0 0 . . . h2 h1

z(n− 1) (n− 2)hn−1 (n− 3)hn−2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . h2 0
0 0 0 . . . 2h3 h2


The determinant of M is equal to the determinant of the above matrix which
is, by definition, equal to the determinant of h

x
. As

∑n−2
i=0 hi+2x

i was chosen
to be separable and not divisible by x, also the polynomial hnx

n−1 + . . .+h1

is separable. Remark that this in particular implies that h2 6= 0. Hence, by
proposition 17, its discriminant is non-zero. Now, (−1)n, 2, h2 and detM
are all non-zero. Hence, τ = 0 is equivalent to the non-zero linear condition
f1 = 0 and the tangent space has indeed codimension 1, as we wanted to
prove.

Now we will use the third criterion of [15, tag 01V9] to prove that P is a
smooth point of H0. Remark that the stalk of the sheaf of differentials is
dual to the tangent space, by [15, tag 00TR]. Hence, the only thing that we
need to check is that the map of local rings Z(p) = OS,p → OH0,P is flat. In
fact, we will prove that H0/S is flat.

We already showed that the irreducible scheme H0 ×S SpecFp has a smooth
point. In particular, ∆ must be irreducible in Fp[c0, . . . , cn], hence it is also
irreducible in Q[c0, . . . , cn]. Hence, H0 is an integral scheme. For every
odd prime number ` there exist separable polynomials over F`, i.e., not all
coefficients of ∆ are divisible by `. Hence, the morphism H0 → S is not
constant and hence [12, cor. 4.3.10, p. 137] implies that it is flat.

Corollary 25. For every i = 0, . . . , p − 1 the scheme Hi is irreducible of
dimension n+ 1.

Proof. We know that X := H0 ×S SpecFp is irreducible by proposition 23
and that X 6= H ×S SpecFp = An+1

Fp
as there exist separable polynomials of

degree n over Fp. Hence, X is a hypersurface and ∆ ∈ Fp[c0, . . . , cn] must
be a power of an irreducible polynomial. By proposition 24 we know that
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X has at least one smooth point. Hence, ∆ actually must be an irreducible
polynomial.

Remark that ∆ is homogeneous of degree 2n − 2 and one of the coeffi-
cients of ∆ is not divisible by p by the observations just made. Hence,
∆− ip ∈ Z[c0, . . . , cn] is irreducible for all i = 0, . . . , p− 1. This implies that
Hi is irreducible. As Hi is a hypersurface of An+1

S which has dimension n+2,
it has dimension n+ 1.

Theorem 26. For every i = 0, . . . , p−1 the space Ni has dimension at most
n.

Proof. As Hi×SSpecFp is naturally isomorphic to H0×SSpecFp, we know by
lemma 24 that Hi has a smooth point. Therefore, Ni is a closed subscheme
of Hi and it does not contain all points of Hi. By corollary 25 we have that
Hi is an irreducible scheme of dimension n+ 1. Hence, Ni has dimension at
most n.

Again we will use lemma 5 to do some counting. Let X be an open subset
of H = An+1

S such that X ∩ Hi = Si and equip it with the structure of
an open subscheme of H. Write X =

⋃m
j=1 D(gj) for some polynomials

gj ∈ Z[1
2
, c0, . . . , cn].2 Let sp be the number of elements of S0(Fp) and let np

be the number of elements of H0(Fp) \ S0(Fp) ∼= N0(Fp).

Lemma 27. There exists a constant C, such that for every odd prime p there
are at least p2n+1 − Cp2n+ 1

2 elements (a0, . . . , an) ∈ (Z/p2Z)n+1 satisfying
∆(a0, . . . , an) ∈ {p, 2p, . . . , p2 − p} ⊂ Z/p2Z.

Proof. By proposition 23 we know that H0×SSpecFp is absolutely irreducible
of dimension n. In particular, S0×SSpecFp is reduced, absolutely irreducible
of dimension n, because it is a non-empty open subscheme and it is smooth
over the base. As S0 is of the form of the scheme in theorem 52, we can
apply the Lang-Weil estimate of theorem 52 to conclude that there exists a
constant D not depending on p, such that |sp − pn| 6 Dpn−

1
2 .

Now we are going to apply lemma 5. Remarking that Si(Fp) = S0(Fp) for all
i = 0, . . . , p− 1, this lemma will tell us that for each i = 0, . . . , p− 1 the set
Si(Z/p2Z) contains pn · sp elements. That is, each of these sets contains at

least p2n −Dp2n− 1
2 elements.

2Here we could take the gj to be the derivatives of ∆.
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Remark that Si(Z/p2Z) only contains elements (a0, . . . , an) ∈ (Z/p2Z)n+1

that satisfy ∆(a0, . . . , an) = i · p ∈ Z/p2Z. Hence, there are at least

(p− 1)(p2n −Dp2n− 1
2 ) = p2n+1 −Dp2n+ 1

2 − p2n +Dp2n− 1
2 > p2n+1 − Cp2n+ 1

2

elements in (Z/p2Z)n+1 satisfying the conditions of the lemma statement,
where we take C to be 2D + 1.

Now we are ready to state and prove an analogue of theorem 9 for hyperel-
liptic curves. Let L ⊂ Zn+1 be the subset of n + 1-tuples (c0, . . . , cn) such
that ∆(c0, . . . , cn) 6= 0, i.e. such that f = cnx

n + cn−1x
n−1s+ . . .+ c0s

n does
not have a double zero. Such an n + 1-tuple defines a hyperelliptic curve
over Q by means of the equation y2 = f . Such a tuple is called nowhere
bad semistable if the corresponding hyperelliptic curve does not have bad
semistable reduction at p for every prime p. For any B ∈ R let LB the subset
of n+ 1-tuples (c0, . . . , cn) such that |ci| 6 B for i = 0, . . . , n.

Corollary 28. For every B ∈ R let QB ⊂ LB be the subset of tuples
(c0, . . . , cn) such that there does not exist a prime p satisfying p | ∆(c0, . . . , cn)

and p2 - ∆(c0, . . . , cn). Then lim supB→∞
|QB |
|LB |

= 0.

Proof. Let p1, p2, . . . be the odd prime numbers ordered in the usual way
and let k ∈ Z>0 be a positive integer. Let Mk =

∏k
i=1 p

2
i . For B ∈ R>0

let IB = {−bBc, . . . , bBc} ⊂ Z. Let Q be the largest integer multiple
of M smaller than B. In In+1

B we consider the subset Ω of n + 1-tuples
(a0, . . . , an) such that ∆(a0, . . . , an) ≡ p, 2p, . . . , or p2 − p mod p2 for some
p ∈ {p1, . . . , pk}.

For every p ∈ {p1, . . . , pk} at least p2n+1−Cp2n+ 1
2 of the p2n+2 residue classes

(A,B) of (Z/p2
iZ)n+1 satisfy the condition ∆(A,B) = p, 2p, . . . , or p2 − p.

That is, there are at most p2n+2−p2n+1 +Cp2n+ 1
2 elements that do not satisfy

the conditions.

By applying the Chinese remainder theorem we get that there are at most∏k
i=1(p2n+2

i − p2n+1
i +Cp

2n+ 1
2

i ) classes (A0, . . . , An) in (Z/MkZ)n+1 for which
there is no i such that ∆(A0, . . . , An) ≡ pi, 2pi, . . . , or p2

i − pi mod p2
i .

Each class (A0, . . . , An) ∈ (Z/MkZ)n+1 has at least ( 2Q
Mk

)n+1 and at most

( 2Q
Mk

+ 4)n+1 representatives in In+1
B .

Remark that every tuple (c0, . . . , cn) satisfying both p | ∆(c0, . . . , cn) and
p2 - ∆(c0, . . . , cn), also satisfies ∆(a0, . . . , an) 6= 0. Hence, LB \ QB contains
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at least (
2Q

Mk

)n+1
(
Mn+1

k −
k∏
i=1

(
p2n+2
i − p2n+1

i + Cp
2n+ 1

2
i

))

= (2Q)n+1

(
1−

k∏
i=1

(
1− p−1

i + Cp
− 3

2
i

))

elements. Furthermore IB contains at most 1 + 2Q + 2MK 6 2Q + 4Mk

elements, hence LB contains at most (2Q+ 4MK)n+1 elements. We combine
the two inequalities to get

|LB \QB|
|LB|

> Uk,B :=

(
2Q

2Q+ 4Mk

)n+1

·

(
1−

k∏
i=1

(
1− p−1

i + Cp
− 3

2
i

))
.

Remark that p−1
i − Cp

− 3
2

i ∼ p−1
i as i → ∞. Hence,

∑M
i=1 p

−1
i − Cp

− 3
2

i → ∞
if M → ∞ and by the product convergence criterion (see for example [8,

th. 4, p. 220]), the product
∏∞

i=1(1 − p−1
i + Cp

− 3
2

i ) must converge to 0. In
particular, we have

1− lim sup
B→∞

|QB|
|LB|

= lim inf
B→∞

|LB \QB|
|LB|

> lim
k→∞

lim
B→∞

Uk,B

= 1−
∞∏
i=1

(
1− p−1

i + Cp
− 3

2
i

)
= 1.

Hence, lim supB→∞
|QB |
|LB |

6 0 and the other inequality trivially holds.

Corollary 29. For every B ∈ R let WB ⊂ LB be the subset of nowhere bad
semistable tuples. Then lim supB→∞

|WB |
|LB |

= 0.

Proof. For any tuple (c0, . . . , cn) such that we have p | ∆(c0, . . . , cn) and
p2 - ∆(c0, . . . , cn) for some odd prime number p, its associated hyperelliptic
curve has bad semistable reduction at p by theorem 22. The statement now
follows immediately from corollary 28.
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3 Semi-abelian reduction of hyperelliptic Ja-

cobians

Suppose that we have a hyperelliptic curve C over Q given by y2 = f(x, s)
and suppose that the discriminant of f is divisible exactly once by the prime
number p. Then we will prove that the Jacobian of C has bad semi-abelian
reduction of toric rank 1 at p. In particular, by corollary 28 for almost all
hyperelliptic Jacobians there is a prime p such that its reduction at p has
this property.

First let us give some definitions.

Definition 30. A group scheme over S is a scheme G/S together with a
factorisation of the functor of points Sch/S → Set through the forgetful
functor Grp → Set. For two group schemes G/S and H/S a morphism
from G to H is a morphism of schemes G → H, such that for each object
X ∈ Sch/S, the map G(X) → H(X) is a morphism of groups. A group
scheme G/S is called commutative if all groups G(X) for X ∈ Sch/S are
abelian.

Example 31. Let k be a field and let Gm be the scheme Spec (k[x, x−1]).
For every scheme X/k the set Gm(X) = {k[x, x−1] → OX(X)} = OX(X)∗

is a group by taking the product of OX(X)∗ as the group operation. This is
functorial and hence it gives a factorisation Sch/S → Grp→ Set of Gm(−).
The induced group scheme is also denoted by Gm. It is a commutative group
scheme.

Definition 32. Let G be a group scheme over S. Then we define the unit
section of G to be the morphism eG : S → G that is the identity element of
the group G(S).

Remark 33. By [15, tag 047L] a group scheme over a field is always separated.

Definition 34. Let f : G → H be a morphism of group schemes over S.
Then we define the kernel of f to be ker f : G×H S → G, where we consider
S to be an H-scheme via the unit section eH and ker f is the first projection.

Remark 35. We will show that the scheme K := G×H S is a group scheme
over S. For every X ∈ Sch/S the group K(X) consists of these elements
of (g, s) ∈ G(X) × S(X) such that fX(g) = (eH)X(s). Note that the group
S(X) has one element, namely the structure morphism s : X → S of X/S.
By functoriality we have that (eH)X(s) = eH ◦ s ∈ H(X) is the identity
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element. Hence, K(X) can be identified with the subset of elements in G(X)
that map to the identity element in H(X), i.e., the kernel of G(X)→ H(X).
This gives K the structure of a group scheme.

Now we are ready to define the main objects of this chapter.

Definition 36. Let S be a scheme and g ∈ Z>0 a non-negative integer. An
abelian scheme of relative dimension g over S is a group scheme A/S that is
proper, smooth, and whose geometric fibres are connected and of dimension
g.

Definition 37. Let k be a field, let A = Gn
m over k for some n ∈ Z>0, let C

be an abelian scheme over Spec k and let B be a group scheme over Spec k.
Let 0 → A → B → C → 0 be a sequence of morphisms of group schemes
over Spec k. Then we say that this sequence is an exact sequence if B → C
is smooth and surjective, and A ∼= ker (B → C) both as scheme over B and
as group scheme over Spec k.

Remark 38. In general a sequence of group schemes 0 → A → B → C → 0
is said to be exact if A is the kernel of B → C and B → C is surjective in
the fppf topology. In our case these two definitions are equivalent. Namely,
if B → C is smooth surjective, then it is fppf and hence surjective in the fppf
topology. On the other hand, suppose that B → C is surjective in the fppf
topology. Then this yields that there exists a diagram

C ′

~~}}
}}

}}
}

g

��
B // C

such that g is fppf. In particular, the map p : B → C from the exact sequence
is surjective. By base changing to B using the map p, we get a diagram

C ′ ×C B //

p′

��

B ×C B
p1

��

p2 // B

p

��
C ′ //

g

44B // C

in which p1 and p2 are the projections onto the first and second coordinate
and the two squares are cartesian. The morphism ψ : B×Spec k A→ B×C B
that maps (b, a) to (b, ab) is an isomorphism. Furthermore p1 ◦ ψ is the first
projection B ×Spec k A → B and as a base change of the smooth morphism
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A → Spec k it is smooth. Hence, p1 is smooth and hence also p′ is smooth.
By [15, tag 02VL] smoothness is fppf-local on the base, hence p is smooth as
g is fppf.

Definition 39. Let k be an algebraically closed field, let G/ Spec k be a com-
mutative group scheme and let r be a non-negative integer. Then G is called
a semi-abelian of toric rank r if it is smooth and connected and there exists
an abelian scheme A/ Spec k and an exact sequence 0→ Gr

m → G→ A→ 0.

Lemma 40. Let k be an algebraically closed field and let G/ Spec k be a group
scheme. Let r, r′ be two non-negative integers such that G is semi-abelian of
toric rank both r and r′. Then r = r′.

Proof. Suppose that two exact sequences 0 → Gr
m → G → A → 0 and

0 → Gr′
m → G → A′ → 0 as in definition 39 are given. Let g and g′ be the

relative dimensions of A respectively A′ over Spec k. We will prove that the
relative dimension of G over A (resp. A′) is the same as the relative dimension
of its kernel Gr

m (resp. Gr′
m) over Spec k, which is r (resp. r′). Then we find

that r + g = r′ + g′.

To prove our claim we will use [15, tag 02NM]. Remark that G → A is
smooth surjective by definition. In particular it is flat and locally of finite
presentation. Moreover, as A → Spec k is smooth, also G → Spec k is
smooth. Hence, G is locally noetherian and hence the fibres of G → A are
locally noetherian. Furthermore, all local rings of these fibres are Cohen-
Macaulay, because they are regular local rings. Hence, the fibres are Cohen-
Macaulay and we can apply the lemma. As G is connected, it will follow
that G → A is equidimensional of some relative dimension d and then the
base change Gr

m → Spec k must be equidimensional of that same dimension
d. Then we get that d = r (resp. d = r′ for the morphism G → A′) and we
are done.

Next we will prove that the sequence 0 → Gr
m(k) → G(k) → A(k) → 0 is

still exact. The left exactness follows from remark 35. Remark that both G
and A are locally of finite type over k. Hence, to prove surjectivity of the
morphism G(k)→ A(k) we may and will assume that

G = Spec

(
k[x1, . . . , xn]

(f1, . . . , fm)

)
and A = Spec

(
k[y1, . . . , yk]

(g1, . . . , g`)

)
.

Suppose that a ∈ A(k) is a point and let p be the corresponding point (i.e. its
image) of A. It is a closed point, hence its preimage is non-empty and closed.
As G is of finite type over k, this implies that the preimage of p contains a
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closed point q. By the weak Nullstellensatz this point corresponds to a point
of G(k), because k is algebraically closed.

Let p be a prime number, not a multiple of char k. Then consider the p-
torsion subgroups of Gr

m(k), G(k) and A(k). By basic group theory, the
sequence 0 → Gr

m(k)[p] → G(k)[p] → A(k)[p] is exact. Now we will prove
that the last map is surjective. Let a ∈ A(k)[p] be an element. Then there
is a g1 ∈ G(k) that maps to it. Then p · g1 maps to 0 and hence it is the
image of an element f ∈ Gr

m(k). Remark that Gm(k) = k∗ is a p-divisible
group, because k is algebraically closed and hence the equation Xp − f has
a solution. In particular Gr

m(k) is also p-divisible and f = p · h for some
h ∈ Gr

m(k). Let g2 be the image of h in G(k) and consider g := g1 − g2. As
g2 maps to 0 in A(k), this element maps to a. Furthermore, we have p ·g = 0
as the difference between f , which maps to p · g1, and p · h, which maps to
p · g2, is zero by construction. Hence, g ∈ G(k)[p] lies in the preimage of a
and the map is surjective.

In particular, we have an exact sequence

0→ Gr
m(k)[p]→ G(k)[p]→ A(k)[p]→ 0.

We know that Gr
m(k)[p] is isomorphic to (Z/pZ)r as Z/pZ-module, because p

is coprime to char k and hence k∗ has exactly p roots of unity of order p. On
the other hand, by [13, §6, p. 64], the group A(k)[p] is isomorphic to (Z/pZ)2g.
In particular, we find that G(k)[p] has p2g+r elements. Analogously, we find
that it has p2g′+r′ elements. We see that r + 2g = r′ + 2g′. Altogether, this
yields r = r′ and g = g′, which proves what we wanted to prove.

Remark 41. In fact, there is even more we can say. As there are no non-
trivial morphisms from a torus to an abelian variety, the tori Gr

m and Gr′
m are

maximal inside G, hence, cf. [4, th. 6.6, p. 220], they are conjugated. As G
is assumed to be commutative, this means that they are the same subgroup
scheme of G. Then also the quotients A and A′, taken in the fppf topology,
are uniquely unique. In particular there is an isomorphism between the exact
sequences 0 → Gr

m → G → A → 0 and 0 → Gr′
m → G → A → 0 that is the

identity on the middle term, G.

Definition 42. A group scheme G/S is called semi-abelian if it is separated,
smooth and all its geometric fibres are semi-abelian.

Definition 43. Let A/Q be an abelian scheme, let r > 0 be an integer and
let p be a prime number. Then we say that A has semi-abelian reduction of
toric rank r at p if there exists a semi-abelian model A/Z(p) such that the
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fibre over Fp has toric rank r. In the case r = 0, we also say that A has good
reduction at p. We say that A has bad reduction at p if it does not have good
reduction at p.

Lemma 44. Let A/Q be an abelian scheme, let r, r′ > 0 be integers and let p
be a prime number. Suppose that A has semi-abelian reduction of both toric
rank r and toric rank r′ at p. Then r = r′.

Proof. Let A/Z(p) and A′/Z(p) be semi-abelian models as in definition 43.
Remark that Z(p) is an integrally closed, noetherian, integral domain. By
definition A and A′ are smooth over Z(p). Hence, because SpecZ(p) contains
two points of which one is non-open, they are of finite type over Z(p). Fur-
thermore A and A′ are separated over Z(p). Now we are in the position to
apply [6, prop. IX.3.2, p. 347]. As A and A′ are connected, they are both iso-
morphic to the fibrewise connected component of the identity of the Neron
model of A. In particular, A and A′ are isomorphic. The statement now
follows from lemma 40.

Next we will restate a statement about semistable curves we will need to use,
but first we need define some notions.

A multigraph Γ is a tuple (V,E), where V is a finite set and E is a finite
multiset whose elements are multisets of cardinality 2 containing only ele-
ments of V . In other words, Γ consists of a finite number of vertices, the
elements of V , and a finite number of edges, the elements of E, connecting
two vertices which do not necessarily need to be distinct. Also, there might
be multiple edges between two points.

Suppose that X is a semi-stable curve over some algebraically closed field
k. Then we will construct a multigraph, which will be called Γ(X). Its
vertices are the irreducible components of X. Every singular point is an
ordinary double point. Hence, it lies on exactly two components if counted
with multiplicity. The edges of Γ(X) correspond to the singular points of X
and they connect the two irreducible components the singular point lies on.

Furthermore, for a multigraph Γ = (V,E), the first cohomology group is
H1(Γ,Z). It can be viewed in the following way. Suppose that each edge is
assigned an arbitrary orientation. Then H1(Γ,Z) is the subset of assignments
of integers to all edges of Γ, i.e. the subset of ZE, such that at each vertex
the sum of the integers assigned to the incoming edges equals the sum of the
integers assigned to the outgoing edges. It is easy to check that this is unique
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up to canonical isomorphism for the different choices of orientations on the
edges of Γ.

Theorem 45 ([2, ex. 8, p. 246]). Let X be a semi-stable curve over a field
k. Then Pic0

X/k is canonically an extension of an abelian variety by a torus
T . The rank of the torus part T is equal to the rank of the cohomology group
H1(Γ(Xk),Z).

Now we are ready to prove the main statement of this chapter.

Theorem 46. Let g > 1 be an integer. Let f ∈ Z[x, s] be a homogeneous
polynomial of degree n = 2g+ 2. Let C = Z(y2− f(x, s)) inside the weighted
projective space PQ(1, 1, g+ 1)(x : s : y). Let p be an odd prime number such
that p | ∆(f) and p2 - ∆(f), where ∆ is defined as on page 13. Then the
Jacobian Pic0

C/Q of C has bad semi-abelian reduction of toric rank 1 at p.

Proof. Consider the model C = Z(y2 − f(x, s)) ⊂ PZ(p)
(1, 1, g + 1)(x : s : y)

over SpecZ(p). Let k be an algebraic closure of Fp. Then the geometric
special fibre Ck has exactly one singular point, which is an ordinary double
point. Furthermore, f(x, s) is not a square in k[x, s], as this would yield
p2 | ∆(f) because n > 4. Hence, y2 − f(x, s) is irreducible in k[x, s, y] and
Ck is integral. Then Γ(Ck) consists of 1 vertex and 1 edge that connects this
vertex with itself. In particular, we see that H1(Γ(Ck,Z)) ∼= Z. By theorem
45 we get that Pic0

Ck/k is an extension of an abelian variety by a torus of

rank 1. As Pic0
Ck/k is the connected component of the identity in PicCk/k, it

is connected. Furthermore, it is smooth by [5, prop. 9.5.19, p. 285]. Hence,
it is semi-abelian of toric rank 1.

By lemma 15 the scheme C/Z(p) is projective. By [5, th. 9.4.8, p. 263] the
scheme PicC/Z(p)

exists and is separated over SpecZ(p). By [5, prop. 9.5.19,
p. 285] the scheme PicC/Z(p)

is smooth over SpecZ(p). By [1, th. XIII.4.7, p.
647] the fibrewise connected component of the identity is represented by an
open subscheme Pic0

C/Z(p)
of PicC/Z(p)

. Now Pic0
C/Z(p)

as an open subscheme

of PicC/Z(p)
is separated and smooth over Z(p). Its geometric fibres, Pic0

Cq/q

and Pic0
Ck/k

, where q is an algebraic closure of Q, are both semi-abelian, by
the previous paragraph and theorem 45. The latter fibre has toric rank 1.
Hence, Pic0

C/Q has semi-abelian reduction of toric rank 1 at p. By lemma 44
it must have bad reduction at p.
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Appendices

A Lang-Weil estimate

In 1954 Lang and Weil published their famous theorem estimating the num-
ber of rational points over a finite field on projective varieties. In the lit-
erature there are many varations of their theorem, but very often they are
stated without proof. Here we try to derive the statement we want to use
from the statements in their original paper.

First let us define some notions.

Definition 47. Let k be a field, n, s ∈ Z>0 integers. Let X ⊂ Pnk be
a reduced projective scheme such that all its irreducible components have
dimension s. Let V ⊂ Pn

k
be a linear subspace of Pn

k
of the form Z(g1, . . . , gs),

where g1, . . . , gs are linear functions in the coordinates of Pn
k
. Suppose that

dim(V ∩Xk) = 0. Then the degree of X is defined as∑
P∈V ∩Xk

dimk (OX,P/(g1, . . . , gs)) .

Remark 48. One can show that for any reduced projective scheme X ⊂ Pnk
there exists such a linear subspace V and furthermore that the quantity∑

P∈V ∩Xk
dimkOX,P/(g1, . . . , gs) does not depend on the choice of V . Fur-

thermore, this definition coincides with the definition where one defines the
degree as the number of intersection points with a linear subspace of dimen-
sion n− s in general position, and with the definition where one defines the
degree as a multiple of the leading coefficient of the Hilbert polynomial.

Example 49. Let k be a field. We will check that a hypersurface defined by
a non-zero square-free homogeneous polynomial f ∈ k[x0, . . . , xn] of degree
d > 0 has degree d. Consider the hypersurface X := Z(f) ⊂ Pnk(x0 : . . . : xn),
which has dimenson n − 1. Then after a linear change of coordinates we
may and will assume that f is not contained in k[x2, . . . , xn]. Let V be
Z(x2, . . . , xn) ⊂ Pn

k
. Then V ∩Xk = Z(f, x2, . . . , xn) ⊂ Pn

k
is isomorphic to

Z(g) ⊂ P1
k
(x0 : x1), where g = f(x0, x1, 0, . . . , 0) is non-zero, homogeneous

of degree d. Hence, V ∩Xk contains finitely many points and for any point
P = (α : β : 0 : . . . : 0) ∈ C ∩Xk, the dimension dimkOX,P/(x2, . . . , xn), is
the number of times the factor (βx0 − αx1) occurs in g. Hence, the sum of
these dimensions is d and the hypersurface Z(f) ⊂ Pnk has degree d.
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The following two results are from Lang and Weil’s paper.

Theorem 50 ([9, p. 819]). For each triple of non-negative integers (n, d, r)
there exists a constant A(n, d, r) such that for any finite field k and any
reduced absolutely irreducible projective scheme V ⊂ Pnk of dimension r and
degree d we have

|V (k)− qr| 6 (d− 1)(d− 2)qr−
1
2 + A(n, d, r)qr−1,

where q = |k|.

For any field k a positive cycle Z in Pnk of degree d > 0 and dimension r is
a finite formal sum

∑
i aiVi with ai ∈ Z>0 of reduced irreducible projective

schemes Vi ⊂ Pnk such that d =
∑

i ai · deg Vi and dimVi = r for each i. A
point on Z is an element of (

⋃
i Vi)(k).

Lemma 51 ([9, p. 820]). There exists a constant A1(n, d, r) depending only
on n, d and r such that for any finite field k and any positive cycle Z in Pnk ,
of degree d and of dimension r, Z has at most A1(n, d, r) · qr points, where
q = |k|.

The two results can be combined into a theorem that we will use in our
estimates.

Theorem 52. Let non-constant homogeneous polynomials f, g1, . . . , gm in
Z[x0, . . . , xn] be given. Consider the scheme V that is the closed subscheme
of
⋃
D+(gm) ⊂ PnZ given by f = 0. Let P be the set of primes for which

Z(f) ⊂ PnFp
is absolutely irreducible, reduced and of dimension n − 1 and

V ×Z Fp 6= ∅. Then there exists a constant C such that for any prime p ∈ P
we have

|V (Fp)− pn−1| 6 Cpn−
3
2 .

Proof. Let p ∈ P and let Vp := V ×Z Fp ⊂ PnFp
and let Wp be the closed

subscheme Z(f) of PnFp
. Then Wp is absolutely irreducible, reduced and of

dimension n − 1. Remark that the degree of Wp is the degree of f . Hence,
by theorem 50 we know that Wp(Fp) has at most

pn−1 + (deg(f)− 1)(deg(f)− 2)pn−
3
2 +B(n, deg(f))pn−2

elements, where for w ∈ Z we define B(n,w) := max06d6w A(n, d, n − 1),
which does not depend on p. In particular this is also an upper bound for
|V (Fp)|.
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On the other hand, Wp(Fp) has at least

lp := pn−1 − (deg(f)− 1)(deg(f)− 2)pn−
3
2 −B(n, deg(f))pn−2

elements. Unfortunately not every point of Wp is contained in Vp. For
j = 1, . . . ,m let Tp,j := Z(f, gj) ⊂ PnFp

. The points of Wp that are not
contained in Vp are in one of the Tp,j. Hence, |Vp(Fp)| > lp − |(

⋃
j Tp,j)(Fp)|.

As Vp 6= ∅ we have Tp,j ( Wp. In particular, the dimension of each irreducible
component of Tp,j is at most n−2 asWp is irreducible. On the other hand, it is
at least n−2 as it is a hypersurface in Wp. Hence, each irreducible component
of Tp,j has dimension n− 2. Furthermore, by Bézout’s theorem the degree of
Tp,j is at most uj := deg(f) deg(gj) which does not depend on p. Consider
the cycle Z which is defined as the sum of the irreducible components of the
Tp,j. It has dimension n − 2 and degree at most u :=

∑
j uj and at least 0.

Hence, by lemma 52 we get that
⋃
j Tp,j has at most B1(n, u) · pn−2 points,

where we define B1(n, u) := max06d6uA1(n, d, n−2), which does not depend
on p.

If we combine the inequalities we get

|Vp(Fp)| > pn−1−(deg(f)−1)(deg(f)−2)pn−
3
2−(B(n, deg(f))+B1(n, u))pn−2.

In particular, we get the inequality of the theorem statement if we choose C
to be (deg(f)− 1)(deg(f)− 2) +B(n, deg(f)) +B1(n, u).

Remark 53. By applying [15, tag 055A] to the generic point of SpecZ, we
see that P is either finite if Z(f) ⊂ PnQ does not have exactly one absolutely
irreducible component, or cofinite in the set of primes if Z(f) ⊂ PnQ has
exactly one absolutely irreducible component.
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[5] B. Fantechi, L. Göttsche, L. Illusie, S.L. Kleiman, N. Nitsure, A. Vis-
toli. Fundamental Algebraic Geometry. Grothendieck’s FGA Explained.
American Mathematical Society, Providence, 2000.

[6] A. Grothendieck. Séminaire de Géométrie Algébrique du Bois Marie -
1967-69 - Groupes de monodromie en géométrie algébrique (SGA 7 I).
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