The Grothendieck group of GL_{n}

Raymond van Bommel, rbommel@math.leidenuniv.nl Supervisor: Joël Riou

The idea of this project is to give an alternative and easier proof to theorem 4 of $[2, \mathrm{p} .49]$ in the case where $G=\mathrm{GL}_{n}$ and $k \subset \mathbb{C}$ a field.

1 Semisimplicity

In this section we want to prove the semisimplicity of GL_{n}-modules over k. Let $0 \rightarrow \rho^{\prime} \rightarrow \rho \rightarrow \rho^{\prime \prime} \rightarrow 0$ be an exact sequence of representations over the algebraic group $\mathrm{GL}_{n, k}$ over a field k of characteristic 0 . Our goal can be reformulated as follows.

Theorem 1. The functor $\operatorname{Hom}\left(\rho^{\prime \prime},-\right)$ from the category of representations of GL_{n} over k to the category of k-modules is exact.

Actually, this theorem would yield that

$$
0 \rightarrow \operatorname{Hom}\left(\rho^{\prime \prime}, \rho^{\prime}\right) \rightarrow \operatorname{Hom}\left(\rho^{\prime \prime}, \rho\right) \rightarrow \operatorname{Hom}\left(\rho^{\prime \prime}, \rho^{\prime \prime}\right) \rightarrow 0
$$

is exact and hence that the identity $\rho^{\prime \prime} \rightarrow \rho^{\prime \prime}$ is the image of an element of $s \in \operatorname{Hom}\left(\rho^{\prime \prime}, \rho\right)$. This element is a section of the original exact sequence.

1.1 Compatibility with extension of scalars

In this section we will prove that theorem 1 is compatible with extension of scalars in the following sense.

Lemma 2. Let $k_{1} \subset k_{2}$ be two fields of characteristic 0 . Then theorem 1 holds for $k=k_{1}$ if it holds for $k=k_{2}$.

Proof. There is a natural map $Z: \operatorname{Hom}_{\mathrm{GL}_{n}, k_{1}}(V, W) \otimes k_{2} \rightarrow \operatorname{Hom}_{\mathrm{GL}_{n}, k_{2}}(V \otimes$ $k_{2}, W \otimes k_{2}$) and this map is injective as $\operatorname{Hom}_{\mathrm{GL}_{n}, k_{i}}(V, W) \subset \operatorname{Hom}_{k_{i}}(V, W)$ (for $i=1,2)$ and Z is the restriction of the isomorphism $\operatorname{Hom}_{k_{1}}(V, W) \otimes k_{2} \cong$ $\operatorname{Hom}_{k_{2}}\left(V \otimes k_{2}, W \otimes k_{2}\right)$. Next we will proof that Z is surjective.

Let $\phi \in \operatorname{Hom}_{\mathrm{GL}_{n}, k_{2}}\left(V \otimes k_{2}, W \otimes k_{2}\right)$. We can consider ϕ as a matrix and let $S \subset k_{2}$ be the k_{1}-vector space the matrix' coefficients generate. It is
finite dimensional. Let e_{1}, \ldots, e_{j} be a basis. As the action of $\mathrm{GL}_{n}, k_{1} \subset$ GL_{n}, k_{2} acts k_{1}-linear, the $k_{1} e_{i}$-component ϕ_{i} of the map $\left.\phi\right|_{V}$ is a morphism of GL_{n}, k_{1}-modules. Furthermore, ϕ_{i} is of the form $Z\left(\psi_{i} \otimes e_{i}\right)$ where $\psi_{i} \in$ $\operatorname{Hom}_{\mathrm{GL}_{n}, k_{1}}(V, W)$. As $\phi=Z\left(\sum_{i} \psi_{i} \otimes e_{i}\right)$, we have proven the surjectivity now.

As $-\otimes k_{2}$ is an exact functor the statement immediately follows.
Remark 3. To prove the statement for fields of characteristic 0 not contained in \mathbb{C} we notice that a statement like this lemma holds for inductive limits and that every field of characteristic 0 is an inductive limit of subfields of \mathbb{C}.

1.2 Proof for $k=\mathbb{C}$

A representation ρ of GL_{n} over $k=\mathbb{C}$ induces a representation V of the group $\mathrm{GL}_{n}(\mathbb{C})$ where $\mathrm{GL}_{n}(\mathbb{C})$ has the usual topology. As $\mathrm{GL}_{n} \rightarrow \mathrm{Aut}_{V}$ is a morphism of varieties, the induced representation is smooth. We restrict this representation to the group $U_{n} \subset \mathrm{GL}_{n}$ of unitary matrices, call it V. In the same way ρ^{\prime} and $\rho^{\prime \prime}$ induce representations V^{\prime} and $V^{\prime \prime}$ of U_{n}. Now we will use the following fact to proof that the sequence $0 \rightarrow V^{\prime} \rightarrow V \rightarrow V^{\prime \prime} \rightarrow 0$ splits.

Fact 4. Every locally compact Hausdorff topological group has a Haar measure.

As U_{n} is a locally compact Hausdorff topological group we can and will equip it with a Haar measure and as U_{n} is abelian, this measure will be both rightand left-invariant. Furthermore we may and do suppose that the measure of the whole group U_{n} is 1 as U_{n} is compact.

Equip V with an arbitrary inner product $\langle\cdot, \cdot\rangle$. Then consider the map

$$
B: V \times V \rightarrow \mathbb{C}:\left(v_{1}, v_{2}\right) \mapsto \int_{U_{n}}\left\langle g v_{1}, g v_{2}\right\rangle d g
$$

Proposition 5. The map B is an inner product of V that is U_{n}-invariant.
Proof. Notice that $B(v, v)=\int\langle g v, g v\rangle d g$ is the integral of a non-negative function and hence it is non-negative. We also deduce immediately that $B(v, v)=0$ if and only if $v=0$. Furthermore, B is clearly linear in the first argument as $\langle\cdot, \cdot\rangle$ is linear in the first argument and in the same way we have $B\left(v_{2}, v_{1}\right)=\overline{B\left(v_{1}, v_{2}\right)}$. Hence, B is an inner product.

Furthermore,

$$
B\left(v_{1}, v_{2}\right)=\int\left\langle g v_{1}, g v_{2}\right\rangle d g=\int\left\langle g g_{3} v_{1}, g g_{3} v_{2}\right\rangle d g=B\left(g_{3} v_{1}, g_{3} v_{2}\right),
$$

as the Haar measure is U_{n}-invariant.
Let W be a space orthogonal to V^{\prime} in V with respect to the inner product B. Then for all $g \in U_{n}, w \in W$ and $v \in V^{\prime}$ we have $B(g w, v)=B\left(w, g^{-1} v\right)=0$ as $g^{-1} v \in V^{\prime}$ and $w \in W$. Hence we have $g w \in W$ and we deduce that W is not only a subspace but in fact a subrepresentation ρ_{W} of V.

This yields an exact sequence of representations $0 \rightarrow V^{\prime} \rightarrow V \rightarrow W \rightarrow 0$. In particular, W is isomorphic to $V^{\prime \prime}$. Finally, because $W \subset V$, this gives us a way to split the exact sequence as we wanted to do.

The subspace W induces a subspace of ρ complement to ρ^{\prime} and isomorphic to $\rho^{\prime \prime}$. Hence $\rho^{\prime \prime}$ is fixed by the subgroup $U_{n}(\mathbb{C}) \subset \mathrm{GL}_{n}(\mathbb{C})$. By proposition 12.1 of $[1, \mathrm{p} .130]$ the stabilizer of $\rho^{\prime \prime}$ is a (Zariski closed) subgroup of GL_{n}. The following theorem will prove that $\rho^{\prime \prime}$ is in fact GL_{n}-invariant and concludes the proof that the exact sequence splits.

Lemma 6. The subset $U_{n}(\mathbb{C}) \subset \mathrm{GL}_{n}(\mathbb{C}) \subset \mathrm{GL}_{n, \mathbb{C}}$ is Zariski dense.

Proof. We will prove that $U_{n}(\mathbb{C})$ is dense in $\mathrm{GL}_{n}(\mathbb{C})$ which is dense in $\mathrm{GL}_{n, \mathbb{C}}$.
Let f be a polynomial on $\mathrm{GL}_{n}(\mathbb{C})$ that is zero on $U_{n}(\mathbb{C})$. We will prove that f is the zero polynomial. Consider the map exp : $\operatorname{Mat}_{n}(\mathbb{C}) \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ that exponentiates a matrix. It is known to be a surjective analytic function. In particular the function $g=f \circ \exp$ is analytic. We will prove that it is the zero function, which by the surjective of \exp also proves that $f=0$.

Suppose that $M \in \operatorname{Mat}_{n}(\mathbb{C})$ is such that $M=-M^{*}$. Then

$$
(\exp M)^{*}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(M^{*}\right)^{n}=\sum_{n=0}^{\infty} \frac{1}{n}(-M)^{n}=\exp (-M)=\exp (M)^{-1} .
$$

Hence, $\exp (M) \in U_{n}(\mathbb{C})$ and $g(M)=0$ for all $M \in \operatorname{Mat}_{n}(\mathbb{C})$ such that $M=-M^{*}$. For $i, j \in\{1, \ldots, n\}$ let $E_{i j}$ be the matrix with a 1 in the (i, j)-th entry and zeros elsewhere. For $i \in\{1, \ldots, n\}$ let $A_{i}=i \cdot E_{i i}$. For $1 \leqslant i<j \leqslant n$ let $B_{i j}=E_{i j}-E_{j i}$ and let $C_{i j}=i E_{i j}+i E_{j i}$. Then the $A_{i}, B_{i j}$ and $C_{i j}$ together form a \mathbb{C}-basis of the vector space $\operatorname{Mat}_{n}(\mathbb{C})$. Moreover the basis vectors satisfy $M=-M^{*}$.

In other words, we can identify $\operatorname{Mat}_{n}(\mathbb{C})$ with $\mathbb{C}^{n^{2}}$ in such a way that in this identification we have $\left.g\right|_{\mathbb{R}^{n^{2}}}=0$. By the theory of complex analysis now follows that all partial derivatives of g in the point $0 \in \mathbb{C}^{n^{2}}$ must be 0 and as g is analytic this yields that $g=0$ on the whole $\mathbb{C}^{n^{2}} \cong \operatorname{Mat}_{n}(\mathbb{C})$.

2 Character theory

Let ρ be a representation of GL_{n} over k. Then ρ induces a representation of $\mathrm{GL}_{n}(k)$ and we define its character to be the function $\chi_{\rho}: \mathrm{GL}_{n}(k) \rightarrow k$: $g \mapsto \operatorname{Tr}(\rho(g))$. The goal of this chapter is to prove the following theorem.

Theorem 7. Two finite-dimensional representations ρ_{1} and ρ_{2} of GL_{n} over k are isomorphic if and only if their characters are equal.

2.1 Preliminary results

The following results will be needed to prove theorem 7 .
Lemma 8. Let A be a ring and E be a simple A-module. Let N be the Jacobsen radical of A. Then $N E=0$.

Proof. As E is simple it is generated by one element, say $e \in E$. Let $I=$ $\operatorname{Ann}(e):=\{a \in A: a e=0\} ;$ it is a left ideal of A. Then $E \cong A / I$. The submodules of E correspond to the left ideals of the ring A containing I. As E is simple, we decude that there are two such ideals and hence that I is a maximal left ideal of A. But then we have $I \supset N$ and hence $N E=0$.

Corollary 9. Let A be a ring and E be a semisimple A-module. Let N be the Jacobsen radical of A. Then $N E=0$.

Theorem 10 (Artin-Wedderburn). Let A be a commutative ring. Suppose that A is artinian and that its Jacobsen radical is zero. Then A is a finite product of matrix rings over division rings.

2.2 Proof of the theorem

Proof. Let V_{1} and V_{2} be two $k\left[\mathrm{GL}_{n}(k)\right]$-modules that are finite-dimensional as k-vector space and have the same character. By the results from the first chapter, we know that V_{1} and V_{2} are semisimple. Let N be the kernel of the natural map $\mathrm{GL}_{n}(k) \rightarrow \operatorname{End}_{k}\left(V_{1} \oplus V_{2}\right)$ and let $B=\mathrm{GL}_{n}(k) / N$. Then V_{1} and V_{2} are B-modules and B acts faithfully on $V_{1} \oplus V_{2}$, hence B is finite dimensional as k-vector space.

Of course V_{1} and V_{2} are semisimple B-modules, as their simple components remain simple over B. Hence, by corollary 9 the Jacobsen radical of B acts
trivially on both V_{1} and V_{2} and hence it is 0 . As B is finite dimensional over k it is certainly artinian. Hence by the Artin-Weddernburn theorem, we have

$$
B=\operatorname{Mat}\left(D_{1}, n_{1}\right) \times \cdots \times \operatorname{Mat}\left(D_{s}, n_{s}\right),
$$

where for $i=1, \ldots, s$ we have $n_{i} \in \mathbb{Z}_{>0}$ and D_{i} is a finite dimensional division algebra over k.

Notice that as a B-module $\operatorname{Mat}\left(D_{i}, n_{i}\right)$ is isomorphic to the product of n_{i} copies of the simple module $D_{i}^{n_{i}}$, where B acts in the obvious way (the i-th factor acts by multiplication and the other factors by zero). In particular we deduce that the simple modules are isomorphic to the $D_{i}^{n_{i}}$.

Let $\pi_{i} \in B$ be such that $\left.\pi_{i}\right|_{\operatorname{Mat}\left(D_{i}, n_{i}\right)}=1$ and $\left.\pi_{i}\right|_{\operatorname{Mat}\left(D_{j}, n_{j}\right)}=0$ for all $i, j \in$ $\{1, \ldots, s\}$ such that $i \neq j$. Then $\chi_{V_{1}}\left(\pi_{i}\right)$ is the number of factors $D_{i}^{n_{i}}$ in V_{1}. The same holds for V_{2}. Together with the fact that the characteristic of k is 0 this proves that V_{1} and V_{2} are isomorphic.

For two $\mathrm{GL}_{n, k}$-modules with the same character, their underlying $\mathrm{GL}_{n}(k)-$ modules are isomorphic. This gives a isomorphism of vector spaces $V_{1} \rightarrow V_{2}$ that commutes with the action of $\mathrm{GL}_{n}(k)$. As $\mathrm{GL}_{n}(k) \subset \mathrm{GL}_{n, k}$ is Zariski dense, the isomorphism in facts commutes with $\mathrm{GL}_{n, k}$ and is a isomorphism of $\mathrm{GL}_{n, k}$-modules.

3 Main statement

In the last chapter we will finally proof theorem 4 of [2, p. 49].
By the corollary of proposition 7 of [2, p. 48] the Grothendieck group of the subgroup $D \subset \mathrm{GL}_{n}$ of diagonal matrices is isomorphic to the group $H:=$ $\mathbb{Z}\left[X_{1}, \ldots, X_{n}, X_{1}^{-1}, \ldots, X_{n}^{-1}\right]$. This isomorphism is called ch : $\mathrm{R}_{k}(D) \rightarrow H$. If V is a D-comodule, then the $X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}$ coefficient of $\operatorname{ch}(V)$ is the rank of $\left\{v \in V: d v=X_{1}^{i} \cdots X_{n}^{i} \otimes v\right\}$.

If we compose ch with the restriction $\mathrm{R}_{k}\left(\mathrm{GL}_{n}\right) \rightarrow \mathrm{R}_{k}(D)$ we obtain a map that is called $\mathrm{ch}_{G}: \mathrm{R}_{k}\left(\mathrm{GL}_{n}\right) \rightarrow H$.

Theorem 11. The homomorphism ch_{G} is injective. Its image is the subgroup H^{W} of $H:=\mathbb{Z}\left[X_{1}, \ldots, X_{n}, X_{1}^{-1}, \ldots, X_{n}^{-1}\right]$ formed by the elements that are invariant under $W=S_{n}$, where W acts on H by permutation of the X_{i}.

3.1 Injectivity

We will factor the map ch_{G} via the character group $X:=\left\{\chi_{V}: \mathrm{GL}_{n}(k) \rightarrow\right.$ $k: V$ is a G-representation $\}$. In the previous section we have proved that the map from $\mathrm{R}_{k}\left(\mathrm{GL}_{n}\right) \rightarrow X$ is injective. Now we will consider why the map $X \rightarrow H$ is injective, proving that the composition is injective.

Proposition 7 of [2, p. 48] tells us that with each element of $f \in H$ corresponds a comodule, say E. For each monomial $m \in H$ the module E has an m component of rank equal to the coefficient of m in f, f_{m}. We have $E=\bigoplus E_{m}$.

Let $D \subset \mathrm{GL}_{n}$ be the (diagonalizable) subgroup of diagonal matrices and let $M \in D(k)$ be an arbitrary element. Write $M=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$, then M acts on the m-component by multiplication with $f_{m} \cdot m\left(d_{1}, \ldots, d_{n}\right)$. In particular $\chi_{E}(M)=f\left(d_{1}, \ldots, d_{n}\right)$. The fact that $X \rightarrow H$ is injective follows from the fact that there is only one polynomial when we fix a set of values in all points of $(\mathbb{Z} \backslash 0)^{n}$.

3.2 Image

We will prove our result by proving the following two lemmas.
Lemma 12. The image of ch_{G} is contained in H^{W}.

Proof. As k is commutative, we have $\chi(A B)=\chi(B A)$ for all $A, B \in \mathrm{GL}_{n}(k)$. Let $\sigma \in S_{n}$ and consider the matrix P that permutes the standard basis by σ. Then for all $M \in D(k)$ as in the previous section, we have $\chi\left(P M P^{-1}\right)=$ $\chi(M)$. In particular, in the terms of the proof in the last section, we must have $f\left(d_{1}, \ldots, d_{n}\right)=f\left(\sigma\left(d_{1}, \ldots, d_{n}\right)\right)$. Hence, the polynomial $f \circ \sigma$ must be equal to the polynomial f for all $\sigma \in S_{n}$ and hence $f \in H^{S_{n}}$.

Lemma 13. The subset $H^{S_{n}}$ is contained in the image of ch_{G}.
Proof. Let $V=k^{n}$ and let $\mathrm{GL}_{n}(k)$ act on it by multiplication. It naturally extends to a $\mathrm{GL}_{n, k}$-module. Clearly $M=\left(d_{1}, \ldots, d_{n}\right) \in D(k)$ acts on the basis vectors e_{i} of V by multiplication with d_{i}. Hence, $\chi_{V}\left(d_{1}, \ldots, d_{n}\right)=$ $d_{1}+\ldots+d_{n}$ and $X_{1}+\ldots+X_{n}$ is in the image of ch_{G}.

For the other symmetric polynomials s_{i} of degree i we consider $\bigwedge^{i} V$. The basis vectors are of the form $e_{j_{1}} \wedge \ldots \wedge e_{j_{i}}$ and M acts on it by multiplication with $d_{j_{1}} \cdots \cdots d_{j_{i}}$. This proves that $\chi_{V}\left(d_{1}, \ldots, d_{n}\right)=s_{i}\left(d_{1}, \ldots d_{n}\right)$ and hence s_{i} is in the image of ch_{G}.

As a ring $H^{S_{n}}$ is generated by the s_{i}. As the character of a tensor product of representations is the product of characters, the lemma can now be considered to be proven.

References

[1] J.S. Milne. Basic Theory of Affine Group Schemes. http://www.jmilne. org/math/CourseNotes/, 2013.
[2] Jean-Pierre Serre. Groupe de Grothendieck des schémas en groupes réductifs déployés. Publications mathématiques l'I.H.É.S., vol. 34 (1968), p. $37-62$.

