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The idea of this project is to give an alternative and easier proof to theorem
4 of [2, p. 49] in the case where G = GLn and k ⊂ C a field.

1 Semisimplicity

In this section we want to prove the semisimplicity of GLn-modules over k.
Let 0 → ρ′ → ρ → ρ′′ → 0 be an exact sequence of representations over
the algebraic group GLn,k over a field k of characteristic 0. Our goal can be
reformulated as follows.

Theorem 1. The functor Hom(ρ′′,−) from the category of representations
of GLn over k to the category of k-modules is exact.

Actually, this theorem would yield that

0→ Hom(ρ′′, ρ′)→ Hom(ρ′′, ρ)→ Hom(ρ′′, ρ′′)→ 0

is exact and hence that the identity ρ′′ → ρ′′ is the image of an element of
s ∈ Hom(ρ′′, ρ). This element is a section of the original exact sequence.

1.1 Compatibility with extension of scalars

In this section we will prove that theorem 1 is compatible with extension of
scalars in the following sense.

Lemma 2. Let k1 ⊂ k2 be two fields of characteristic 0. Then theorem 1
holds for k = k1 if it holds for k = k2.

Proof. There is a natural map Z : HomGLn,k1(V,W )⊗ k2 → HomGLn,k2(V ⊗
k2,W⊗k2) and this map is injective as HomGLn,ki(V,W ) ⊂ Homki(V,W ) (for
i = 1, 2) and Z is the restriction of the isomorphism Homk1(V,W ) ⊗ k2 ∼=
Homk2(V ⊗ k2,W ⊗ k2). Next we will proof that Z is surjective.

Let φ ∈ HomGLn,k2(V ⊗ k2,W ⊗ k2). We can consider φ as a matrix and
let S ⊂ k2 be the k1-vector space the matrix’ coefficients generate. It is
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finite dimensional. Let e1, . . . , ej be a basis. As the action of GLn, k1 ⊂
GLn, k2 acts k1-linear, the k1ei-component φi of the map φ|V is a morphism
of GLn, k1-modules. Furthermore, φi is of the form Z(ψi ⊗ ei) where ψi ∈
HomGLn,k1(V,W ). As φ = Z(

∑
i ψi ⊗ ei), we have proven the surjectivity

now.

As −⊗ k2 is an exact functor the statement immediately follows.

Remark 3. To prove the statement for fields of characteristic 0 not contained
in C we notice that a statement like this lemma holds for inductive limits
and that every field of characteristic 0 is an inductive limit of subfields of C.

1.2 Proof for k = C

A representation ρ of GLn over k = C induces a representation V of the
group GLn(C) where GLn(C) has the usual topology. As GLn → AutV is a
morphism of varieties, the induced representation is smooth. We restrict this
representation to the group Un ⊂ GLn of unitary matrices, call it V . In the
same way ρ′ and ρ′′ induce representations V ′ and V ′′ of Un. Now we will use
the following fact to proof that the sequence 0→ V ′ → V → V ′′ → 0 splits.

Fact 4. Every locally compact Hausdorff topological group has a Haar mea-
sure.

As Un is a locally compact Hausdorff topological group we can and will equip
it with a Haar measure and as Un is abelian, this measure will be both right-
and left-invariant. Furthermore we may and do suppose that the measure of
the whole group Un is 1 as Un is compact.

Equip V with an arbitrary inner product 〈·, ·〉. Then consider the map

B : V × V → C : (v1, v2) 7→
∫
Un

〈gv1, gv2〉dg.

Proposition 5. The map B is an inner product of V that is Un-invariant.

Proof. Notice that B(v, v) =
∫
〈gv, gv〉dg is the integral of a non-negative

function and hence it is non-negative. We also deduce immediately that
B(v, v) = 0 if and only if v = 0. Furthermore, B is clearly linear in the first
argument as 〈·, ·〉 is linear in the first argument and in the same way we have
B(v2, v1) = B(v1, v2). Hence, B is an inner product.
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Furthermore,

B(v1, v2) =

∫
〈gv1, gv2〉dg =

∫
〈gg3v1, gg3v2〉dg = B(g3v1, g3v2),

as the Haar measure is Un-invariant.

Let W be a space orthogonal to V ′ in V with respect to the inner product B.
Then for all g ∈ Un, w ∈ W and v ∈ V ′ we have B(gw, v) = B(w, g−1v) = 0
as g−1v ∈ V ′ and w ∈ W . Hence we have gw ∈ W and we deduce that W is
not only a subspace but in fact a subrepresentation ρW of V .

This yields an exact sequence of representations 0→ V ′ → V → W → 0. In
particular, W is isomorphic to V ′′. Finally, because W ⊂ V , this gives us a
way to split the exact sequence as we wanted to do.

The subspace W induces a subspace of ρ complement to ρ′ and isomorphic to
ρ′′. Hence ρ′′ is fixed by the subgroup Un(C) ⊂ GLn(C). By proposition 12.1
of [1, p. 130] the stabilizer of ρ′′ is a (Zariski closed) subgroup of GLn. The
following theorem will prove that ρ′′ is in fact GLn-invariant and concludes
the proof that the exact sequence splits.

Lemma 6. The subset Un(C) ⊂ GLn(C) ⊂ GLn,C is Zariski dense.

Proof. We will prove that Un(C) is dense in GLn(C) which is dense in GLn,C.

Let f be a polynomial on GLn(C) that is zero on Un(C). We will prove that
f is the zero polynomial. Consider the map exp : Matn(C) → GLn(C) that
exponentiates a matrix. It is known to be a surjective analytic function. In
particular the function g = f ◦ exp is analytic. We will prove that it is the
zero function, which by the surjective of exp also proves that f = 0.

Suppose that M ∈ Matn(C) is such that M = −M∗. Then

(expM)∗ =
∞∑
n=0

1

n!
(M∗)n =

∞∑
n=0

1

n
(−M)n = exp(−M) = exp(M)−1.

Hence, exp(M) ∈ Un(C) and g(M) = 0 for all M ∈ Matn(C) such that
M = −M∗. For i, j ∈ {1, . . . , n} let Eij be the matrix with a 1 in the
(i, j)-th entry and zeros elsewhere. For i ∈ {1, . . . , n} let Ai = i · Eii. For
1 6 i < j 6 n let Bij = Eij −Eji and let Cij = iEij + iEji. Then the Ai, Bij

and Cij together form a C-basis of the vector space Matn(C). Moreover the
basis vectors satisfy M = −M∗.
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In other words, we can identify Matn(C) with Cn2
in such a way that in this

identification we have g|Rn2 = 0. By the theory of complex analysis now

follows that all partial derivatives of g in the point 0 ∈ Cn2
must be 0 and

as g is analytic this yields that g = 0 on the whole Cn2 ∼= Matn(C).
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2 Character theory

Let ρ be a representation of GLn over k. Then ρ induces a representation
of GLn(k) and we define its character to be the function χρ : GLn(k) → k :
g 7→ Tr(ρ(g)). The goal of this chapter is to prove the following theorem.

Theorem 7. Two finite-dimensional representations ρ1 and ρ2 of GLn over
k are isomorphic if and only if their characters are equal.

2.1 Preliminary results

The following results will be needed to prove theorem 7.

Lemma 8. Let A be a ring and E be a simple A-module. Let N be the
Jacobsen radical of A. Then NE = 0.

Proof. As E is simple it is generated by one element, say e ∈ E. Let I =
Ann(e) := {a ∈ A : ae = 0}; it is a left ideal of A. Then E ∼= A/I. The
submodules of E correspond to the left ideals of the ring A containing I. As
E is simple, we decude that there are two such ideals and hence that I is a
maximal left ideal of A. But then we have I ⊃ N and hence NE = 0.

Corollary 9. Let A be a ring and E be a semisimple A-module. Let N be
the Jacobsen radical of A. Then NE = 0.

Theorem 10 (Artin-Wedderburn). Let A be a commutative ring. Suppose
that A is artinian and that its Jacobsen radical is zero. Then A is a finite
product of matrix rings over division rings. �

2.2 Proof of the theorem

Proof. Let V1 and V2 be two k[GLn(k)]-modules that are finite-dimensional
as k-vector space and have the same character. By the results from the first
chapter, we know that V1 and V2 are semisimple. Let N be the kernel of
the natural map GLn(k) → Endk(V1 ⊕ V2) and let B = GLn(k)/N . Then
V1 and V2 are B-modules and B acts faithfully on V1 ⊕ V2, hence B is finite
dimensional as k-vector space.

Of course V1 and V2 are semisimple B-modules, as their simple components
remain simple over B. Hence, by corollary 9 the Jacobsen radical of B acts
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trivially on both V1 and V2 and hence it is 0. As B is finite dimensional over
k it is certainly artinian. Hence by the Artin-Weddernburn theorem, we have

B = Mat(D1, n1)× · · · ×Mat(Ds, ns),

where for i = 1, . . . , s we have ni ∈ Z>0 and Di is a finite dimensional division
algebra over k.

Notice that as a B-module Mat(Di, ni) is isomorphic to the product of ni
copies of the simple module Dni

i , where B acts in the obvious way (the i-th
factor acts by multiplication and the other factors by zero). In particular we
deduce that the simple modules are isomorphic to the Dni

i .

Let πi ∈ B be such that πi|Mat(Di,ni) = 1 and πi|Mat(Dj ,nj) = 0 for all i, j ∈
{1, . . . , s} such that i 6= j. Then χV1(πi) is the number of factors Dni

i in V1.
The same holds for V2. Together with the fact that the characteristic of k is
0 this proves that V1 and V2 are isomorphic.

For two GLn,k-modules with the same character, their underlying GLn(k)-
modules are isomorphic. This gives a isomorphism of vector spaces V1 → V2
that commutes with the action of GLn(k). As GLn(k) ⊂ GLn,k is Zariski
dense, the isomorphism in facts commutes with GLn,k and is a isomorphism
of GLn,k-modules.
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3 Main statement

In the last chapter we will finally proof theorem 4 of [2, p. 49].

By the corollary of proposition 7 of [2, p. 48] the Grothendieck group of the
subgroup D ⊂ GLn of diagonal matrices is isomorphic to the group H :=
Z[X1, . . . , Xn, X

−1
1 , . . . , X−1n ]. This isomorphism is called ch : Rk(D) → H.

If V is a D-comodule, then the X i1
1 · · ·X in

n coefficient of ch(V ) is the rank of
{v ∈ V : dv = X i

1 · · ·X i
n ⊗ v}.

If we compose ch with the restriction Rk(GLn) → Rk(D) we obtain a map
that is called chG : Rk(GLn)→ H.

Theorem 11. The homomorphism chG is injective. Its image is the subgroup
HW of H := Z[X1, . . . , Xn, X

−1
1 , . . . , X−1n ] formed by the elements that are

invariant under W = Sn, where W acts on H by permutation of the Xi.

3.1 Injectivity

We will factor the map chG via the character group X := {χV : GLn(k) →
k : V is a G-representation}. In the previous section we have proved that
the map from Rk(GLn)→ X is injective. Now we will consider why the map
X → H is injective, proving that the composition is injective.

Proposition 7 of [2, p. 48] tells us that with each element of f ∈ H corresponds
a comodule, say E. For each monomial m ∈ H the module E has an m-
component of rank equal to the coefficient ofm in f , fm. We have E =

⊕
Em.

Let D ⊂ GLn be the (diagonalizable) subgroup of diagonal matrices and
let M ∈ D(k) be an arbitrary element. Write M = diag(d1, . . . , dn), then
M acts on the m-component by multiplication with fm · m(d1, . . . , dn). In
particular χE(M) = f(d1, . . . , dn). The fact that X → H is injective follows
from the fact that there is only one polynomial when we fix a set of values
in all points of (Z \ 0)n.

3.2 Image

We will prove our result by proving the following two lemmas.

Lemma 12. The image of chG is contained in HW .
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Proof. As k is commutative, we have χ(AB) = χ(BA) for all A,B ∈ GLn(k).
Let σ ∈ Sn and consider the matrix P that permutes the standard basis by
σ. Then for all M ∈ D(k) as in the previous section, we have χ(PMP−1) =
χ(M). In particular, in the terms of the proof in the last section, we must
have f(d1, . . . , dn) = f(σ(d1, . . . , dn)). Hence, the polynomial f ◦ σ must be
equal to the polynomial f for all σ ∈ Sn and hence f ∈ HSn .

Lemma 13. The subset HSn is contained in the image of chG.

Proof. Let V = kn and let GLn(k) act on it by multiplication. It naturally
extends to a GLn,k-module. Clearly M = (d1, . . . , dn) ∈ D(k) acts on the
basis vectors ei of V by multiplication with di. Hence, χV (d1, . . . , dn) =
d1 + . . .+ dn and X1 + . . .+Xn is in the image of chG.

For the other symmetric polynomials si of degree i we consider
∧i V . The

basis vectors are of the form ej1 ∧ . . .∧ eji and M acts on it by multiplication
with dj1 · · · · · dji . This proves that χV (d1, . . . , dn) = si(d1, . . . dn) and hence
si is in the image of chG.

As a ring HSn is generated by the si. As the character of a tensor product of
representations is the product of characters, the lemma can now be considered
to be proven.
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