The Grothendieck group of GL_n

Raymond van Bommel, rbommel@math.leidenuniv.nl Supervisor: Joël Riou

The idea of this project is to give an alternative and easier proof to theorem 4 of [2, p. 49] in the case where $G = \operatorname{GL}_n$ and $k \subset \mathbb{C}$ a field.

1 Semisimplicity

In this section we want to prove the semisimplicity of GL_n -modules over k. Let $0 \to \rho' \to \rho \to \rho'' \to 0$ be an exact sequence of representations over the algebraic group $\operatorname{GL}_{n,k}$ over a field k of characteristic 0. Our goal can be reformulated as follows.

Theorem 1. The functor $\operatorname{Hom}(\rho'', -)$ from the category of representations of GL_n over k to the category of k-modules is exact.

Actually, this theorem would yield that

$$0 \to \operatorname{Hom}(\rho'', \rho') \to \operatorname{Hom}(\rho'', \rho) \to \operatorname{Hom}(\rho'', \rho'') \to 0$$

is exact and hence that the identity $\rho'' \to \rho''$ is the image of an element of $s \in \text{Hom}(\rho'', \rho)$. This element is a section of the original exact sequence.

1.1 Compatibility with extension of scalars

In this section we will prove that theorem 1 is compatible with extension of scalars in the following sense.

Lemma 2. Let $k_1 \subset k_2$ be two fields of characteristic 0. Then theorem 1 holds for $k = k_1$ if it holds for $k = k_2$.

Proof. There is a natural map Z: $\operatorname{Hom}_{\operatorname{GL}_n,k_1}(V,W) \otimes k_2 \to \operatorname{Hom}_{\operatorname{GL}_n,k_2}(V \otimes k_2, W \otimes k_2)$ and this map is injective as $\operatorname{Hom}_{\operatorname{GL}_n,k_i}(V,W) \subset \operatorname{Hom}_{k_i}(V,W)$ (for i = 1, 2) and Z is the restriction of the isomorphism $\operatorname{Hom}_{k_1}(V,W) \otimes k_2 \cong \operatorname{Hom}_{k_2}(V \otimes k_2, W \otimes k_2)$. Next we will proof that Z is surjective.

Let $\phi \in \operatorname{Hom}_{\operatorname{GL}_n,k_2}(V \otimes k_2, W \otimes k_2)$. We can consider ϕ as a matrix and let $S \subset k_2$ be the k_1 -vector space the matrix' coefficients generate. It is

finite dimensional. Let e_1, \ldots, e_j be a basis. As the action of $\operatorname{GL}_n, k_1 \subset \operatorname{GL}_n, k_2$ acts k_1 -linear, the k_1e_i -component ϕ_i of the map $\phi|_V$ is a morphism of GL_n, k_1 -modules. Furthermore, ϕ_i is of the form $Z(\psi_i \otimes e_i)$ where $\psi_i \in \operatorname{Hom}_{\operatorname{GL}_n,k_1}(V,W)$. As $\phi = Z(\sum_i \psi_i \otimes e_i)$, we have proven the surjectivity now.

As $-\otimes k_2$ is an exact functor the statement immediately follows.

Remark 3. To prove the statement for fields of characteristic 0 not contained in \mathbb{C} we notice that a statement like this lemma holds for inductive limits and that every field of characteristic 0 is an inductive limit of subfields of \mathbb{C} .

1.2 Proof for $k = \mathbb{C}$

A representation ρ of GL_n over $k = \mathbb{C}$ induces a representation V of the group $\operatorname{GL}_n(\mathbb{C})$ where $\operatorname{GL}_n(\mathbb{C})$ has the usual topology. As $\operatorname{GL}_n \to \operatorname{Aut}_V$ is a morphism of varieties, the induced representation is smooth. We restrict this representation to the group $U_n \subset \operatorname{GL}_n$ of unitary matrices, call it V. In the same way ρ' and ρ'' induce representations V' and V'' of U_n . Now we will use the following fact to proof that the sequence $0 \to V' \to V \to V'' \to 0$ splits.

Fact 4. Every locally compact Hausdorff topological group has a Haar measure.

As U_n is a locally compact Hausdorff topological group we can and will equip it with a Haar measure and as U_n is abelian, this measure will be both rightand left-invariant. Furthermore we may and do suppose that the measure of the whole group U_n is 1 as U_n is compact.

Equip V with an arbitrary inner product $\langle \cdot, \cdot \rangle$. Then consider the map

$$B: V \times V \to \mathbb{C}: (v_1, v_2) \mapsto \int_{U_n} \langle gv_1, gv_2 \rangle dg$$

Proposition 5. The map B is an inner product of V that is U_n -invariant.

Proof. Notice that $B(v, v) = \int \langle gv, gv \rangle dg$ is the integral of a non-negative function and hence it is non-negative. We also deduce immediately that B(v, v) = 0 if and only if v = 0. Furthermore, B is clearly linear in the first argument as $\langle \cdot, \cdot \rangle$ is linear in the first argument and in the same way we have $B(v_2, v_1) = \overline{B(v_1, v_2)}$. Hence, B is an inner product.

Furthermore,

$$B(v_1, v_2) = \int \langle gv_1, gv_2 \rangle dg = \int \langle gg_3v_1, gg_3v_2 \rangle dg = B(g_3v_1, g_3v_2),$$

as the Haar measure is U_n -invariant.

Let W be a space orthogonal to V' in V with respect to the inner product B. Then for all $g \in U_n$, $w \in W$ and $v \in V'$ we have $B(gw, v) = B(w, g^{-1}v) = 0$ as $g^{-1}v \in V'$ and $w \in W$. Hence we have $gw \in W$ and we deduce that W is not only a subspace but in fact a subrepresentation ρ_W of V.

This yields an exact sequence of representations $0 \to V' \to V \to W \to 0$. In particular, W is isomorphic to V". Finally, because $W \subset V$, this gives us a way to split the exact sequence as we wanted to do.

The subspace W induces a subspace of ρ complement to ρ' and isomorphic to ρ'' . Hence ρ'' is fixed by the subgroup $U_n(\mathbb{C}) \subset \operatorname{GL}_n(\mathbb{C})$. By proposition 12.1 of [1, p. 130] the stabilizer of ρ'' is a (Zariski closed) subgroup of GL_n . The following theorem will prove that ρ'' is in fact GL_n -invariant and concludes the proof that the exact sequence splits.

Lemma 6. The subset $U_n(\mathbb{C}) \subset \operatorname{GL}_n(\mathbb{C}) \subset \operatorname{GL}_{n,\mathbb{C}}$ is Zariski dense.

Proof. We will prove that $U_n(\mathbb{C})$ is dense in $\mathrm{GL}_n(\mathbb{C})$ which is dense in $\mathrm{GL}_{n,\mathbb{C}}$.

Let f be a polynomial on $\operatorname{GL}_n(\mathbb{C})$ that is zero on $U_n(\mathbb{C})$. We will prove that f is the zero polynomial. Consider the map $\exp : \operatorname{Mat}_n(\mathbb{C}) \to \operatorname{GL}_n(\mathbb{C})$ that exponentiates a matrix. It is known to be a surjective analytic function. In particular the function $g = f \circ \exp$ is analytic. We will prove that it is the zero function, which by the surjective of exp also proves that f = 0.

Suppose that $M \in \operatorname{Mat}_n(\mathbb{C})$ is such that $M = -M^*$. Then

$$(\exp M)^* = \sum_{n=0}^{\infty} \frac{1}{n!} (M^*)^n = \sum_{n=0}^{\infty} \frac{1}{n} (-M)^n = \exp(-M) = \exp(M)^{-1}.$$

Hence, $\exp(M) \in U_n(\mathbb{C})$ and g(M) = 0 for all $M \in \operatorname{Mat}_n(\mathbb{C})$ such that $M = -M^*$. For $i, j \in \{1, \ldots, n\}$ let E_{ij} be the matrix with a 1 in the (i, j)-th entry and zeros elsewhere. For $i \in \{1, \ldots, n\}$ let $A_i = i \cdot E_{ii}$. For $1 \leq i < j \leq n$ let $B_{ij} = E_{ij} - E_{ji}$ and let $C_{ij} = iE_{ij} + iE_{ji}$. Then the A_i, B_{ij} and C_{ij} together form a \mathbb{C} -basis of the vector space $\operatorname{Mat}_n(\mathbb{C})$. Moreover the basis vectors satisfy $M = -M^*$.

In other words, we can identify $\operatorname{Mat}_n(\mathbb{C})$ with \mathbb{C}^{n^2} in such a way that in this identification we have $g|_{\mathbb{R}^{n^2}} = 0$. By the theory of complex analysis now follows that all partial derivatives of g in the point $0 \in \mathbb{C}^{n^2}$ must be 0 and as g is analytic this yields that g = 0 on the whole $\mathbb{C}^{n^2} \cong \operatorname{Mat}_n(\mathbb{C})$. \Box

2 Character theory

Let ρ be a representation of GL_n over k. Then ρ induces a representation of $\operatorname{GL}_n(k)$ and we define its character to be the function $\chi_{\rho} : \operatorname{GL}_n(k) \to k :$ $g \mapsto \operatorname{Tr}(\rho(g))$. The goal of this chapter is to prove the following theorem.

Theorem 7. Two finite-dimensional representations ρ_1 and ρ_2 of GL_n over k are isomorphic if and only if their characters are equal.

2.1 Preliminary results

The following results will be needed to prove theorem 7.

Lemma 8. Let A be a ring and E be a simple A-module. Let N be the Jacobsen radical of A. Then NE = 0.

Proof. As E is simple it is generated by one element, say $e \in E$. Let $I = Ann(e) := \{a \in A : ae = 0\}$; it is a left ideal of A. Then $E \cong A/I$. The submodules of E correspond to the left ideals of the ring A containing I. As E is simple, we decude that there are two such ideals and hence that I is a maximal left ideal of A. But then we have $I \supset N$ and hence NE = 0. \Box

Corollary 9. Let A be a ring and E be a semisimple A-module. Let N be the Jacobsen radical of A. Then NE = 0.

Theorem 10 (Artin-Wedderburn). Let A be a commutative ring. Suppose that A is artinian and that its Jacobsen radical is zero. Then A is a finite product of matrix rings over division rings.

2.2 Proof of the theorem

Proof. Let V_1 and V_2 be two $k[\operatorname{GL}_n(k)]$ -modules that are finite-dimensional as k-vector space and have the same character. By the results from the first chapter, we know that V_1 and V_2 are semisimple. Let N be the kernel of the natural map $\operatorname{GL}_n(k) \to \operatorname{End}_k(V_1 \oplus V_2)$ and let $B = \operatorname{GL}_n(k)/N$. Then V_1 and V_2 are B-modules and B acts faithfully on $V_1 \oplus V_2$, hence B is finite dimensional as k-vector space.

Of course V_1 and V_2 are semisimple *B*-modules, as their simple components remain simple over *B*. Hence, by corollary 9 the Jacobsen radical of *B* acts trivially on both V_1 and V_2 and hence it is 0. As B is finite dimensional over k it is certainly artinian. Hence by the Artin-Weddernburn theorem, we have

$$B = \operatorname{Mat}(D_1, n_1) \times \cdots \times \operatorname{Mat}(D_s, n_s),$$

where for i = 1, ..., s we have $n_i \in \mathbb{Z}_{>0}$ and D_i is a finite dimensional division algebra over k.

Notice that as a *B*-module $Mat(D_i, n_i)$ is isomorphic to the product of n_i copies of the simple module $D_i^{n_i}$, where *B* acts in the obvious way (the *i*-th factor acts by multiplication and the other factors by zero). In particular we deduce that the simple modules are isomorphic to the $D_i^{n_i}$.

Let $\pi_i \in B$ be such that $\pi_i|_{\operatorname{Mat}(D_i,n_i)} = 1$ and $\pi_i|_{\operatorname{Mat}(D_j,n_j)} = 0$ for all $i, j \in \{1, \ldots, s\}$ such that $i \neq j$. Then $\chi_{V_1}(\pi_i)$ is the number of factors $D_i^{n_i}$ in V_1 . The same holds for V_2 . Together with the fact that the characteristic of k is 0 this proves that V_1 and V_2 are isomorphic.

For two $\operatorname{GL}_{n,k}$ -modules with the same character, their underlying $\operatorname{GL}_n(k)$ modules are isomorphic. This gives a isomorphism of vector spaces $V_1 \to V_2$ that commutes with the action of $\operatorname{GL}_n(k)$. As $\operatorname{GL}_n(k) \subset \operatorname{GL}_{n,k}$ is Zariski dense, the isomorphism in facts commutes with $\operatorname{GL}_{n,k}$ and is a isomorphism of $\operatorname{GL}_{n,k}$ -modules. \Box

3 Main statement

In the last chapter we will finally proof theorem 4 of [2, p. 49].

By the corollary of proposition 7 of [2, p. 48] the Grothendieck group of the subgroup $D \subset \operatorname{GL}_n$ of diagonal matrices is isomorphic to the group $H := \mathbb{Z}[X_1, \ldots, X_n, X_1^{-1}, \ldots, X_n^{-1}]$. This isomorphism is called $\operatorname{ch} : \operatorname{R}_k(D) \to H$. If V is a D-comodule, then the $X_1^{i_1} \cdots X_n^{i_n}$ coefficient of $\operatorname{ch}(V)$ is the rank of $\{v \in V : dv = X_1^i \cdots X_n^i \otimes v\}$.

If we compose ch with the restriction $R_k(GL_n) \to R_k(D)$ we obtain a map that is called $ch_G : R_k(GL_n) \to H$.

Theorem 11. The homomorphism ch_G is injective. Its image is the subgroup H^W of $H := \mathbb{Z}[X_1, \ldots, X_n, X_1^{-1}, \ldots, X_n^{-1}]$ formed by the elements that are invariant under $W = S_n$, where W acts on H by permutation of the X_i .

3.1 Injectivity

We will factor the map ch_G via the character group $X := \{\chi_V : GL_n(k) \to k : V \text{ is a } G\text{-representation}\}$. In the previous section we have proved that the map from $R_k(GL_n) \to X$ is injective. Now we will consider why the map $X \to H$ is injective, proving that the composition is injective.

Proposition 7 of [2, p. 48] tells us that with each element of $f \in H$ corresponds a comodule, say E. For each monomial $m \in H$ the module E has an mcomponent of rank equal to the coefficient of m in f, f_m . We have $E = \bigoplus E_m$.

Let $D \subset \operatorname{GL}_n$ be the (diagonalizable) subgroup of diagonal matrices and let $M \in D(k)$ be an arbitrary element. Write $M = \operatorname{diag}(d_1, \ldots, d_n)$, then M acts on the *m*-component by multiplication with $f_m \cdot m(d_1, \ldots, d_n)$. In particular $\chi_E(M) = f(d_1, \ldots, d_n)$. The fact that $X \to H$ is injective follows from the fact that there is only one polynomial when we fix a set of values in all points of $(\mathbb{Z} \setminus 0)^n$.

3.2 Image

We will prove our result by proving the following two lemmas.

Lemma 12. The image of ch_G is contained in H^W .

Proof. As k is commutative, we have $\chi(AB) = \chi(BA)$ for all $A, B \in \operatorname{GL}_n(k)$. Let $\sigma \in S_n$ and consider the matrix P that permutes the standard basis by σ . Then for all $M \in D(k)$ as in the previous section, we have $\chi(PMP^{-1}) = \chi(M)$. In particular, in the terms of the proof in the last section, we must have $f(d_1, \ldots, d_n) = f(\sigma(d_1, \ldots, d_n))$. Hence, the polynomial $f \circ \sigma$ must be equal to the polynomial f for all $\sigma \in S_n$ and hence $f \in H^{S_n}$. \Box

Lemma 13. The subset H^{S_n} is contained in the image of ch_G .

Proof. Let $V = k^n$ and let $\operatorname{GL}_n(k)$ act on it by multiplication. It naturally extends to a $\operatorname{GL}_{n,k}$ -module. Clearly $M = (d_1, \ldots, d_n) \in D(k)$ acts on the basis vectors e_i of V by multiplication with d_i . Hence, $\chi_V(d_1, \ldots, d_n) = d_1 + \ldots + d_n$ and $X_1 + \ldots + X_n$ is in the image of ch_G .

For the other symmetric polynomials s_i of degree i we consider $\bigwedge^i V$. The basis vectors are of the form $e_{j_1} \land \ldots \land e_{j_i}$ and M acts on it by multiplication with $d_{j_1} \cdots d_{j_i}$. This proves that $\chi_V(d_1, \ldots, d_n) = s_i(d_1, \ldots, d_n)$ and hence s_i is in the image of ch_G .

As a ring H^{S_n} is generated by the s_i . As the character of a tensor product of representations is the product of characters, the lemma can now be considered to be proven.

References

- J.S. Milne. Basic Theory of Affine Group Schemes. http://www.jmilne. org/math/CourseNotes/, 2013.
- [2] Jean-Pierre Serre. Groupe de Grothendieck des schémas en groupes réductifs déployés. *Publications mathématiques l'I.H.É.S.*, vol. 34 (1968), p. 37 - 62.