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Introduction

Let C be a curve of genus g over a finite field Fq. The rationality of the zeta
function of C and the associated functional equation can be proven using
Riemann-Roch. Indeed, the zeta function can be written as

Z(C ,T ) =
∞∑
n=0

|{D ∈ Div(C) : D is effective of degree n}| · T n.

With the weak Riemann-Roch theorem rationality can be obtained, and with
the strong form, including Serre duality, the functional equation can be
deduced.

From this, we get that C(Fqe ) = qe + 1−
∑2g

i=1 α
e
i , where αi ∈ C are the

roots of the numerator of Z(C ,T ). In order to prove that |αi | =
√
q, the

Riemann hypothesis for C , it suffices to prove that

|C(Fqe )| = qe +O(
√
qe).

This has been proved first by Weil in 1949. Weil actually gave two proofs.
The first one uses intersection theory on C × C and the Hodge index
theorem, and the second uses the Rosati involution on Jac(C).



An elementary proof by Stepanov, Smith and Bombieri

In 1969, Sergei A. Stepanov gave an elementary proof for the Riemann
hypothesis for hyperelliptic curves over finite fields. This proof has been
extended to the general case by Wolfgang M. Smith, and later simplified by
Enrico Bombieri. This simplified proof is the topic of this talk. The main
reference is:

Enrico Bombieri, Counting points on curves over finite fields, 1973.

In modern language, the proof uses the polynomial method to prove that

|C(Fqe )| = qe +O(
√
qe).

The idea of the proof is to construct a rational function on C of small
enough degree, which vanishes at almost all of the rational points in C(Fqe ).
This will give an upper bound on the number of points in C(Fqe ). A lower
bound is obtained by looking at a kind of twists of C .



Set-up

From now on, we assume that q is a square and q > (g + 1)4. This is not a
restriction for us, as it suffices to prove the Riemann hypothesis for the base
change of C to an extension of Fq.

There is a natural bijection Frob : C(Fq)→ C(Fq) induced by the Frobenius
on Fq. Let ν(C , id) be the number of elements of

{x ∈ C(Fq) : Frob(x) = id(x)}.

Of course, in this case, this is just the set C(Fq), so we are just counting
rational points. However, this definition can be generalised by defining
ν(C , σ) as the cardinality of

P(C , σ) := |{x ∈ C(Fq) : Frob(x) = σ(x)}|,

for any automorphism σ of C . Our first goal is to prove that

ν(C , σ) ≤ q + (2g + 1)
√
q + 1.

I will first discuss the proof for σ = id, and then explain how to modify the
proof for the general case.



First steps

If P(C , id) = C(Fq) = ∅, then there is nothing to prove, hence let
P0 ∈ C(Fq) be some element. For each positive integer m, let

Rm = L(mP0) = {f ∈ Fq(C) : div(f ) + mP0 ≥ 0}.

Then by Riemann-Roch we know what m + 1− g ≤ dimRm ≤ m + 1, where
the first inequality is an equality if m > 2g − 2.

On the one hand, for any integer a, let Rpa

` ⊂ R`pa be the space of functions

of the shape f p
a

with f ∈ R`. On the other hand, let RFrob
` ⊂ R`q be the

subspace of functions of the shape f Frob = f ◦ Frob with f ∈ R`. Note that
f Frob 6= f q in general, as Frob does not raise the coefficients of f to the q-th
power.

Key lemma

Let a, m, and ` be positive integers. If `pa < q, then the natural morphism

Rpa

` ⊗Fq R
Frob
m −→ Rpa

` RFrob
m

is an isomorphism.



Proof of key lemma.

Let f1, . . . , fr be a basis of Rm such that

ordP0(f1) < ordP0(f2) < . . . < ordP0(fr ).

Suppose there are g1, . . . , gr ∈ R` not all equal to 0, such that

r∑
i=1

gpa

i f Frob
i = 0. (1)

Let i0 is the smallest value of i such that gi 6= 0. Then, on the one hand,

ordP0(gpa

i0
f Frob
i0 ) = ordP0(gpa

i0
) + q · ordP0(fi0) ≤ q · ordP0(fi0)

as the function gi0 is only allowed to have a pole at P0, and hence it cannot
be zero at P0. On the other hand, for any i > i0 such that gi 6= 0, we have

ordP0(gpa

i f Frob
i ) ≥ −pa`+ q · ordP0(fi ) ≥ −pa`+ q(1 + ordP0(fi0)).

As we assumed that `pa < q, we find that

ordP0(gpa

i f Frob
i ) > ordP0(gpa

i0
f Frob
i0 ), for all i > i0.

This contradicts equation (1).



The next steps

Corollary

As a consequence of the key lemma, the map

τ : Rpa

` RFrob
m −→ Rpa

` Rm :
∑

gpa

i f Frob
i 7−→

∑
gpa

i fi

is well-defined whenever `pa < q.

Recall that we assumed q to be a square. Now we pick a, m and ` such that

pa =
√
q, m =

√
q + 2g , ` =

⌊
g

g + 1

√
q

⌋
+ g + 1.

Then indeed
`pa ≤ g

g + 1
q + (g + 1)

√
q < q,

as we assumed that q > (g + 1)4.

Claim

For this choice of a, m, and `, the map τ is not injective.



Proving non-injectivity

Proof of claim.

Both m and ` are greater than 2g − 2. Hence, by Riemann-Roch

dim(R`) = `+ 1− g , dim(Rm) = m + 1− g .

On the other hand, Rpa

` Rm is a subspace of R`pa+m, which has dimension

dim(R`pa+m) = `pa + m + 1− g .

The domain of τ has dimension dim(R`) dim(Rm), which can be shown to be
greater than dim(R`pa+m) for this choice of a, m, and `.

We find that the map τ is not injective. Let
∑

gpa

i f Frob
i be a non-zero

element of the kernel of τ . Suppose that P ∈ C(Fq) \ {P0}. Then

f Frob
i (P) = fi (Frob(P)) = fi (P).

Hence,
∑

gpa

i f Frob
i has a zero at P. As every element of Rpa

` RFrob
m is a

√
q-th power, the function

∑
gpa

i f Frob
i vanishes at P with multiplicity at

least
√
q. In particular, counted with multiplicity,

∑
gpa

i f Frob
i has at least

√
q · (|C(Fq)| − 1) zeros.



Finishing the proof of the inequality

As a function cannot have more zeros than poles, we get the following.

Corollary

We have

√
q(|C(Fq)| − 1) ≤ `pa + qm =

√
q · √q + q · (√q + 2g),

or
|C(Fq)| ≤ q + (2g + 1)

√
q + 1.

We proved that ν(C , 1) satisfied the desired inequality for the upper bound,
but in fact we can prove it for any ν(C , σ). We then need to consider a
slightly different map

τ : Rpa

` RFrob
m −→ Rpa

` Rσm :
∑

gpa

i f Frob
i 7−→

∑
gpa

i f σi .

Then any point P ∈ C(Fq) satisfying Frob(P) = σ(P) and P 6= P0 will be a
zero of multiplicity at least

√
q for the function in the kernel of τ . The rest

of the argument is the same.



A useful proposition

Proposition

For any curve, there exists a map C → P1, such that the induced field
extension Fq(P1) ⊂ Fq(C) is finite separable.

Proof of proposition.

Let t ∈ Fq(C) be a transcendental element, so that Fq(t) ⊂ Fq(C) is finite.
Now [Fq(C)p : Fq(t)p] = [Fq(C) : Fq(t)], hence also

[Fq(C) : Fq(C)p] = [Fq(t) : Fq(t)p] = p. (2)

Let K be the separable closure of Fq(t) in Fq(C). Then Fq(C)/K is purely

inseparable, and as a consequence of equation (2), we have K = Fq(C)p
b

for
some b. Now we can take the separable extension

Fq(t) ⊂ K = Fq(C)p
b as field∼= Fq(C).

This extension of function fields gives a map of curves C → P1 as
desired.



How to prove a lower bound?

Now our goal is to get a lower bound for ν(CFqe , σ). Let C → P1 be a map

of curves, such that Fq(P1) ⊂ Fq(C) is separable.

First, we will assume that the extension Fq(P1) ⊂ Fq(C) is Galois. In other
words, we assume that C → P1 is a Galois cover with Galois group G .

Lemma

As e →∞, we have∑
σ∈G

ν(CFqe , σ) = |G | · |P1(Fqe )|+O(1).

Proof of lemma.

For any unramified point y ∈ P1(Fqe ), there are exactly |G | points above it.
Each of these points is counted in exactly one of the ν(CFqe , σ). As there are

only finitely many ramification points for the map C → P1 and this number
does not depend on e, the error caused by these ramification points goes into
the O(1) term.



Finishing the proof of the lower bound

The following is a corollary of the lemma and the inequalities

ν(CFqe , σ) ≤ qe +O(qe/2)

that we already proved.

Corollary

For each σ ∈ G , we have

ν(CFqe , σ) = |G | · (qe + 1)−
∑
σ′ 6=σ

ν(CFqe , σ
′) +O(1) ≥ qe −O(qe/2).

In case C → P1 is not Galois, we consider a Galois closure D → C → P1 with
Galois group G . The subfield Fq(C) of Fq(D) corresponds to a subgroup H
of G , and we get ∑

σ∈H

ν(D Fqe , σ) = |H| · |C(Fqe )|+O(1),

analogously to the lemma. The lower bound for |C(Fqe )| now follows from
the results we obtained for D.



Summary

We proved that
ν(C , σ) ≤ q + (2g + 1)

√
q + 1

by using the polynomial method. By using the Riemann-Roch theorem and
dimension counts, we constructed a rational function which vanishes with
multiplicity

√
q in all but one of the points in P(C , σ). We compared the

number of zeros with the maximum number of poles to obtain the inequality.

Then we used Galois theory and the upper bounds we just proved, to prove a
similar lower bound for ν(C , σ). We first did this in the case there is a Galois
cover C → P1, and then we deduced the general case from this case.

Rationality and the functional equation for the zeta function follow easily
from the Riemann-Roch theorem for algebraic curves. Hence, this finishes
the proof of the Weil conjectures for C .

Reference: E. Bombieri, Counting points on curves over finite fields, 1973.


	
	
	

