Explicit arithmetic intersection theory and computation of Néron-Tate heights

Raymond van Bommel

Massachusetts Institute of Technology
Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation
joint work with:
David Holmes (Leiden University)
Steffen Müller (University of Groningen)

Acknowledgements

This is work done during my PhD in Leiden at the workshop Arithmetic of curves held at Baskerville Hall, United Kingdom. We thank the organisers and staff for their support.

We also thank Christian Neurohr for sharing his code to compute period matrices and Abel-Jacobi maps.

We thank Martin Bright for help with one of the technical parts of the work.

Outline

This talk will consist of four parts

- introduction: the Néron-Tate height and its decomposition in local heights
- computation of the archimedean contribution of the Néron-Tate height
- computation of the non-archimedean contribution of the Néron-Tate height
- results: numerical verification of BSD in some new non-hyperelliptic cases

Generalised Birch and Swinnerton-Dyer conjecture

Tate has generalised the Birch and Swinnerton-Dyer conjecture to abelian varieties over number fields. We consider the case where J is the Jacobian of a curve C over \mathbb{Q}. Then the conjecture links:

- the special value of the L-function of J,
- the real period Ω,
- the regulator R,
- the Tamagawa numbers c_{p},
- the size of $J(\mathbb{Q})_{\text {tors }}$,
- the (algebraic) rank r of $J(\mathbb{Q})$, and
- the size of the Tate-Shafarevich group $\amalg(J)$,
through the formula: $\lim _{s \rightarrow 1}(s-1)^{-r} L(J, s)=\frac{\Omega \cdot R \cdot|Ш(J)| \cdot \prod_{p} c_{p}}{\left|J(\mathbb{Q})_{\text {tors }}\right|^{2}}$

Regulator

We know that $J(\mathbb{Q}) \cong \mathbb{Z}^{r} \times J(\mathbb{Q})_{\text {tors }}$ (Mordell-Weil).

Definition (regulator)

If $x_{1}, \ldots, x_{r} \in J(\mathbb{Q})$ are generators of the free part of $J(\mathbb{Q})$, then the regulator of $J(\mathbb{Q})$ is defined as

$$
\left|\operatorname{det}\left(\begin{array}{cccc}
\left\langle x_{1}, x_{1}\right\rangle & \left\langle x_{1}, x_{2}\right\rangle & \ldots & \left\langle x_{1}, x_{r}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle x_{r}, x_{1}\right\rangle & \left\langle x_{r}, x_{2}\right\rangle & \ldots & \left\langle x_{r}, x_{r}\right\rangle
\end{array}\right)\right|
$$

where $\left\langle x_{i}, x_{j}\right\rangle=\frac{1}{2}\left(h_{\mathrm{NT}}\left(x_{i}+x_{j}\right)-h_{\mathrm{NT}}\left(x_{i}\right)-h_{\mathrm{NT}}\left(x_{j}\right)\right)$ is the height pairing associated to the Néron-Tate height on $J(\mathbb{Q})$.

Néron-Tate height

Identify each point of J with its inverse to obtain the Kummer variety $K=J / \pm$ associated to J. Let Θ be a Theta divisor on J. Then 2Θ descends to a very ample divisor on K, with an associated closed embedding $\iota: K \hookrightarrow \mathbb{P}^{2^{g}-1}$, where g is the genus of C.

Definition (Néron-Tate height)

We define a naive height $h_{\text {naive }}(x)=\log \left(\max \left(\left|x_{1}\right|, \ldots,\left|x_{2 g}\right|\right)\right)$, where ($x_{1}: \ldots: x_{2} g$) are primitive integer coordinates for $\iota(x)$. The Néron-Tate height is then defined by:

$$
h_{N T}(x)=\lim _{n \rightarrow \infty} \frac{1}{n^{2}} h_{\text {naive }}(n x) \quad \text { for } x \in J(\mathbb{Q})
$$

Remark. It is not practical to compute the Néron-Tate height using this definition.

Local height contributions

Theorem (Faltings (1984), Hriljac (1985))

Let D and E be divisors on C of degree 0 , with disjoint support. Then

$$
h_{\mathrm{NT}}([D],[E])=-\sum_{v}\langle D, E\rangle_{v},
$$

where we sum over all places, finite and infinite, of \mathbb{Q}.
The local heights $\langle D, E\rangle_{v}$ will be defined in the next two sections.
Note that $\langle D, E\rangle_{v}$ does depend on the specific choice of D and E, and does not define a pairing on $J(\mathbb{Q})$ (but their sum does).

Holmes (2012) and Müller (2014) already described algorithms to compute these local heights in the case C is hyperelliptic. Now we extend this to the general case.

Green's functions

Definition (Green's function)

Let E a divisor on C of degree 0 , and let ω be a volume form.
Then the Green's function

$$
g_{E, \omega}: C(\mathbb{C}) \backslash \operatorname{supp}(E) \longrightarrow \mathbb{R}
$$

is determined by the following properties:

- $g_{E, \omega}$ has a logarithmic singularity at $\operatorname{supp}(E)$,
- $d d^{c} g_{E, \omega}=\operatorname{deg}(E) \cdot \omega$, where $d=\partial+\bar{\partial}$ and $d^{c}=\frac{1}{4 \pi i}(\partial-\bar{\partial})$,
- $\int_{C} g_{E, \omega} \omega=0$.

In order to compute the Green's function, we compute a period matrix for J, i.e. we realise $J_{\mathbb{C}}$ as \mathbb{C}^{g} / Λ, using code of Neurohr. The computation is then reduced to several evaluations of the classical Jacobi theta function. Details omitted.

Infinite local contribution

Definition (local pairing at infinite place)

Let $D=\sum_{P} n_{P} P$ be a divisor on C of degree 0 , with support disjoint from E. Then

$$
\langle D, E\rangle_{\infty}=\sum_{P} n_{p} g_{E, \omega}(P) .
$$

Remark. The sum does not depend on ω, and defines a symmetric bilinear function on all pairs of divisors of degree 0 with disjoint support.

Regular models

Definition (regular model)

Let p be prime. A (regular) model of C over $\mathbb{Z}_{(p)}$ is a (regular) integral, normal, projective flat $\mathbb{Z}_{(p)}$-scheme \mathcal{C} of relative dimension 1 , together with an isomorphism $\mathcal{C}_{\eta} \cong C$.

Example

The projective closure of the scheme $y^{2}=x^{3}+3 x^{2}-2 x$ inside \mathbb{P}^{2} over $\mathbb{Z}_{(2)}$ is a model for the curve over \mathbb{Q} defined by the same equation. This model is not regular at the point $(0,0)$ in the special fibre, i.e. at the maximal ideal $\mathfrak{m}=(x, y, 2)$, as all terms of the equation lie in \mathfrak{m}^{2}. In other words, the tangent space is too big.

By repeatedly blowing up, we can obtain a regular model.

Intersecting divisors on regular models

On a regular model \mathcal{C}, there are two types of divisors:

- horizontal divisors: closure of a divisor on the generic fibre $\mathcal{C}_{\mathbb{Q}}$;
- vertical divisors: divisors supported on the special fibre $\mathcal{C}_{\mathbb{F}_{p}}$. These divisors can intersect.

Example

Let \mathcal{C} be the projective closure of the scheme $y^{2}=x^{3}-7 x$ in \mathbb{P}^{2} over $\mathbb{Z}_{(2)}$. Consider the closures \mathcal{P} and \mathcal{Q} of $(4,6) \in \mathcal{C}_{\mathbb{Q}}$ and $(4,-6) \in \mathcal{C}_{\mathbb{Q}}$. The horizontal divisors \mathcal{P} and \mathcal{Q} intersect in the point $(0,0) \in \mathcal{C}_{\mathbb{F}_{2}}$ with multiplicity

$$
\text { length }\left(\frac{\left(\frac{\mathbb{Z}_{(2)}[x, y]}{y^{2}-x^{3}+7 x}\right)_{(x, y, 2)}}{(x-4, y-6)+(x-4, y+6)}\right)=\text { length }\left(\frac{\mathbb{Z}_{(2)}}{12}\right)=2
$$

Intersection pairing on regular model

Definition (intersection number)

If \mathcal{Q} and \mathcal{R} are two distinct prime divisors on \mathcal{C}, then we define their intersection number as

$$
\iota(\mathcal{Q}, \mathcal{R})=\sum_{P \in \mathcal{Q} \cap \mathcal{R}} \text { multiplicity }_{P}(\mathcal{Q} \cap \mathcal{R}) \cdot \log |k(P)|
$$

where $k(P)$ is the residue field at P.
This extends to a bilinear function on all pairs of divisors on \mathcal{C} with no common components.

Remark. This does not respect linear equivalence. For example, the special fibre, which is a principal divisor, does have non-zero intersection with other divisors.

Finite local contribution

Lemma

(a) The function $\iota(\mathcal{D}, \mathcal{E})$ can be extended to all pairs of divisors, with $\left.\mathcal{D}\right|_{\mathcal{C}_{\eta}}$ and $\left.\mathcal{E}\right|_{\mathcal{C}_{\eta}}$ of degree 0 having disjoint support.
(b) Let D be a divisor of degree 0 on C. Then there exists a divisor $\Gamma(D)$ on the regular model \mathcal{C}, such that

- the horizontal part of $\Gamma(D)$ is the closure of D;
- $\iota(\Gamma(D), \mathcal{V})=0$ for each vertical divisor \mathcal{V}.

Definition (local pairing at finite place)

Let D and E be two divisors on C of degree 0 with disjoint support. Then

$$
\langle D, E\rangle_{p}=\iota(\Gamma(D), \Gamma(E))
$$

For the computation, we need to identify a finite set of p for which $\langle D, E\rangle_{p}$ is non-zero. Details are omitted.

Results

First result. We numerically verified the Birch and SwinnertonDyer conjecture, up to squares, for the split Cartan modular curve of level 13. This is a non-hyperelliptic curve of genus 3, whose Jacobian is of rank 3.

Second result. Let C be the projective closure of the scheme given by

$$
3 x^{3} y+5 x y^{2}+5 y^{4}-5^{9}=0
$$

inside \mathbb{P}^{2}, a curve with very bad reduction at 5 . Consider the divisor $D=(1: 0: 0)-(0: 25: 1)$. We computed

$$
h_{\mathrm{NT}}(D, D) \approx 3.2107
$$

Runtime. The first result took about 10 seconds of runtime. The second result took several minutes in Magma.

