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Abelian varieties over finite fields

Let q = pe be a prime power, which will be fixed throughout most of this
talk.

Definition

An abelian variety of dimension g over Fq is a smooth irreducible proper
variety A of dimension g over Fq that carries a group structure. The number
of points in A(Fq) is also called the order of A.

Example

Abelian varieties of dimension 1 are elliptic curves.

The product of two abelian varieties of dimension g1 and g2 is an
abelian variety of dimension g1 + g2.

For a smooth projective irreducible curve C of genus g over Fq, the
Jacobian Jac(C) has the structure of an abelian variety of dimension g .
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Isogenies and the order

Definition

An isogeny f : A1 → A2 from one abelian variety to another, is a morphism
that respects both the structure as a variety and the group structure, such
that f is surjective on Fq-points and ker(f ) is 0-dimensional (i.e. finite).
The abelian varieties A1 and A2 are then called isogenous.

The kernel of an isogeny is a finite subgroup of A1. On the other hand, if we
are given such a finite subgroup K ⊂ A1, an isogeny A1 → A1/K can be
constructed, and A1/K will have the structure of an abelian variety.

It is not hard to see that isogenous abelian varieties have the same
dimension. The following, however, might be more surprising.

Lemma

Let A1 and A2 be isogenous abelian varieties over Fq, then A1 and A2 have
the same order.
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Torsion and the Tate module

Let A be an abelian variety over Fq. If ` is a prime number, then

A(Fq)[`] ∼=

{
(Z/`Z)2g if ` 6= p;

(Z/pZ)r if ` = p,

for some integer r ∈ {0, . . . , g}, which is called the p-rank of A.

Definition

The Tate module T`(A) is defined as

T`(A) := lim
n∈Z>0

A(Fq)[`n],

where the transition maps are given by multiplication-by-`. This has the
natural structure of a Z`-module, and we define V`(A) = T`(A)⊗Z` Q`.

For ` 6= p, we see that V`(A) is non-canonically isomorphic to Q2g
` , and that

Gal(Fq/Fq) acts on this vector space. In particular, Frobq acts on this vector
space.
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Weil polynomials and Honda-Tate theory

Theorem

The characteristic polynomial fA(x) of Frobq acting on V`(A) does not
depend on the choice of ` 6= p and has the following properties:

α) fA has coefficients in Z, and is monic of degree 2g ;

β) fA is q-symmetric, meaning that it is of the shape

x2g +a1x
2g−1 + · · ·+ag−1x

g−1 +agx
g +qag−1x

g+1 + · · ·+qg−1a1x +qg ;

γ) all complex roots of fA have absolute value q1/2.

There is a correspondence between isogeny classes of abelian varieties and
Weil polynomials (polynomials that occur as fA). Below we state this in the
case of ordinary abelian varieties, i.e. abelian varieties whose p-rank is g .

Theorem (Honda-Tate theory)

There is a correspondence between isogeny classes of ordinary abelian
varieties over Fq and polynomials f ∈ Z[x ] satisfying conditions α, β, and γ,
and the additional condition that the middle coefficient of f is not 0 mod p.
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Hasse-Weil inequalities

The order of A turns out to equal fA(1). As a consequence of the properties
of fA, one can deduce the following.

Theorem (Hasse-Weil)

Let n be the order of an abelian variety of dimension g over Fq. Then

(q − 2q1/2 + 1)g ≤ n ≤ (q + 2q1/2 + 1)g .

The main consequence of our work is the following theorem, which says that
these Hasse-Weil bounds are optimal “up to a constant”.

Theorem (vBCLPS)

For g sufficiently large, every integer in the interval[
(q − 2q1/2 + 3− q−1)g , (q + 2q1/2 − 1− q−1)g

]
occurs at the order of some geometrically simple ordinary principally
polarised abelian variety of dimension g over Fq.
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Comparison with previous work of Aubry-Haloui-Lachaud and Kadets

In previous works of Aubry-Haloui-Lachaud and Kadets, the interval

Isimple =

[
lim inf
A simple

|A(Fq)|1/ dim A, lim sup
A simple

|A(Fq)|1/ dim A

]
has been studied. They gave inner and outer bounds for this interval.[

q − b2q1/2c+ 3, q + b2q1/2c − 1− q−1
]
⊂ Isimple ⊂

[
q − d2q1/2e+ 2, q + 2d2q1/2e

]
The outer bounds are an improvement compared to the Hasse-Weil bounds.
This can be explained by the fact that the abelian varieties with very high or
low point counts, are products of low dimensional abelian varieties with
high/low point counts. Hence, these are not simple abelian varieties.

Our result can be viewed as an improvement for the inner bounds for the
interval Isimple in the case q is not a square.

Note that in the previous work, it has not been attempted to construct every
order in this interval. Only sequences converging to the extremal points of
the inner bounds have been constructed.
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Effective versions of our results

As n gets large, the intervals of point counts that we can construct start to
overlap. So for any q, all but finitely many positive integers will occur as the
order of an abelian variety over Fq. We also have an effective version of this
result. This extends previous work of Howe and Kedlaya, who proved that
every integer can occur as the order of an ordinary abelian variety over F2.

Theorem (vBCLPS)

Every integer ≥ q3
√

q log q occurs as the order of some abelian variety over Fq.
For q ≤ 5, every integer occurs as the order of an abelian variety over Fq.
For q = 7, the only integers that do not occur are 2, 14, and 17.

Remark

If we require the abelian variety to be ordinary, then the order 3 has to be
excluded for q = 4, and the orders 8 and 73 for have to be excluded in the
case q = 7.

If we moreover require fA to be squarefree, then the order 17 has to be
excluded for q = 7.
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Constructing Weil polynomials

As we saw, constructing abelian varieties is equivalent to finding Weil
polynomials. To construct potential such Weil polynomials, we take a
polynomial h ∈ R[z] of degree less than 2g , and we let

ĥ(x) := x2gh(1/x) + qgh(x/q) ∈ R[x ] (e.g. ẑ i = x2g−i + qg−ix i ).

This polynomial ĥ is q-symmetric by construction. Getting the coefficients of
ĥ to lie in Z requires putting conditions of the form

h[i ] + qi−gh[2g−i ] ∈ Z, for i = 0, . . . , g

where h[i ] is the coefficient of z i in h. To get the roots of ĥ to have absolute
value q1/2, we use the following key lemma.

Key lemma

Let D = {|z | ≤ q−1/2} ⊂ C. Suppose that h has no zeros inside the disk D.

Then all roots of ĥ have absolute value q1/2.
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Proof of key lemma

C : |z | = q1/2

∂D

j(C)

h(∂D)

Picture due to Wanlin Li

Proof.

The winding number of h(∂D) around 0 is 0. Therefore, the winding number
of j(x) = xgh(1/x) around 0 as x traverses C equals g . In particular, the

function Re(j(x)) = 1
2
ĥ(x) has 2g roots on the circle C .
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Overview of the simple method

Goal

Construct a polynomial h(z) ∈ R[z] such that

h has degree at most 2g − 1 and constant coefficient 1;

h[i ] + qi−gh[2g−i ] ∈ Z and 2h[g ] 6≡ 0 mod p;

h has no zeros on D;

ĥ(1) = h(1) + qgh(1/q) = n (desired order of abelian variety).

Simple method

1 Start with a power series j ∈ Z[[z]] such that j has no zeros on D and

qg j(1/q) = n.

2 Truncate j into a polynomial h of degree g .

3 Add a multiple of zg to h to correct the value of ĥ(1).

4 If needed, make an adjustment to h to assure ĥ[g ] 6≡ 0 mod p.

5 Verify that h has no zeros on D.
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Example of the simple method

Example (q = 3 and n = 16007)

Step 1. Consider power series of the form

j0(z) = 1 + c2z
2 + c3z

3 + . . . ∈ Z[[z]], with ci ∈ {−1, 0, 1}.

Then we see that j( 1
3
) can range between all values in [ 5

6
, 7

6
].

We see that 38 < n < 39, and n
39 ≈ 0.8132, so n is closer to 39, so we pick

g = 9. Moreover, n
39 is smaller than 5

6
, but greater than ( 5

6
)2.

Therefore, there is some choice of c2, c3, . . ., such that

j0( 1
3
)2 =

n

39
, or 39 · j0( 1

3
)2 = n.

Now we take j = j2
0 as a starting point. By construction j0 satisfies

|j(z)| ≥ 1− 1

3(1− 1√
3
)
≈ 0.2113 for all z ∈ D.

Step 2. It turns out that

h(z) = 1− 2z2 + 3z4 − 2z6 + 2z7 + 3z8 − 4z9.
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Example of the simple method

Example (q = 3 and n = 16007, continued)

Step 3. We have ĥ(1) = 16008, so we add − 1
2
z9 to get ĥ(1) = n.

Step 4. We now have ĥ[9] = −9 ≡ 0 mod 3, so we add z8 − 2z9 to h. This
does not change the value of ĥ(1), but it does cause ĥ[9] = −13 6≡ 0 mod 3.

Step 5. Let z ∈ D. We will use the triangle inequality to bound |h(z)| from
below. We start with

|j(z)|2 ≥

(
1− 1

3(1− 1√
3
)

)2

≈ 0.0447.

The truncation to a polynomial causes this value to decrease at most by

3−10/2 + 3−11/2 + . . . =
1

310(1− 1√
3
)
≈ 0.00004.

Also considering the changes in Step 3 and Step 4, we get

|h(z)| ≥ 0.0447− 0.00004− 1
2
· 3−9/2 − 3−8/2 − 2 · 3−9/2 ≈ 0.0144,

which indeed ensures that h has no zeros on D.
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Difference between our different methods

The simple method has the following advantages and disadvantages.

The simple method already shows that every large enough n is the order
of an abelian variety over Fq.

It is easy to explain and you can actually use it in practice to find Weil
polynomials.

It is hard to get the abelian varieties that we construct to be simple with
this method.

Our advanced method has the following advantages and disadvantages.

The method kicks in only for very large values of n, making it infeasible
to use in practice.

Asymptotically, it gives much better results.

It is easy to impose geometric simplicity on the abelian varieties that we
construct.

Our third method, the effective method is an improved version of the simple
method. It gives a practical algorithm and a reasonable upper bound for the
maximum integer that cannot occur as the order of an abelian variety.
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Sketch of the advanced method

Idea of the advanced method

Instead of a polynomial h of degree g with coefficients in Z, we start
with a polynomial of degree ≈ 2g − log g with coefficients in R.

The starting polynomial h is chosen such that it is of the shape Pd for
some polynomial P of relatively small degree with P(0) = 1.
Moreover, P is constructed in such a way that it is as large enough on
the disk D, while allowing for as many values of ĥ(1) as possible, i.e.
allowing for as many orders of abelian varieties as possible.

From the outside to the inside, we make all the coefficients of h integral.
We do this by adding polynomials of the shape z iP j to h. In each step
we make sure that the value ĥ(1) stays equal to n.

Because we are adding powers of P j to h, we can obtain better lower
bounds on D than by just using the triangle inequality as before.

Remark

Finding a P that is optimal for our problem, reduces to a problem in
potential theory. In the appendix of our preprint, this potential theoretic
problem is solved and P is found in terms of Chebyshev polynomials.
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Weil polynomials and base change

Suppose that the Weil polynomial fA of A over Fq has roots {α1, . . . , α2g}.
Then the Weil polynomial fA,e of the base change AFqe has {αe

1, . . . , α
e
2g} as

roots. The roots of fA,e come in pairs {αi , q
e/αi}, so there is a monic

polynomial RA,e ∈ Z[x ] of degree g satisfying fA,e(x) = xnRA,e(x + qe

x
).

Proposition

Suppose RA,1 is irreducible and A is not geometrically simple. Then αi = ζαj

for some i , j ∈ {1, . . . , 2g} such that αj 6= αi 6= q
αj

, and some root of unity ζ.

Proof.

If A is isogenous to A1 × A2 over Fqe then RA,e = RA1,e · RA2,e . The absolute
Galois group of Q acts transitively on the roots of RA,1, so the only way in
which RA,e is not irreducible, is if some of its roots collapse.

This means that
αe
i + qe

αe
i

= αe
j + qe

αe
j

for some αi and αj coming from different pairs. In particular, we get that
either αi = ζαj or αi = ζ q

αj
, for some e-th root of unity ζ.
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A sufficient condition for geometric simplicity

Lemma

Suppose g ≥ 5 and RA,1 has Galois group Sg , then A is geometrically simple.

Proof.

Suppose A is not geometrically simple, and let αi and αj be as in the
proposition. Then the extension

Q(αi + q
αi

) ⊂ Q(αi , ζ) = Q(αi , αj)

is a compositum of abelian extensions, hence it is abelian. Therefore, the
subextension

Q(αi + q
αi

) ⊂ Q(αi + q
αi
, αj + q

αj
)

is Galois. This is in contradiction with the fact that Sg−2 is not a normal
subgroup of Sg−1.

Goal

Construct h in such a way that RA,1 has Galois group Sg .
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Congruence conditions

Idea

By imposing a congruence condition

ĥ(x) ≡ h`(x) mod `

for some polynomial h`(x) ∈ F`[x ], we can get the Galois group of RA,1 to
contain certain cycle types. If we have enough different cycle types, then the
Galois group is guaranteed to be Sg .

We can adjust our advanced method to construct polynomials satisfying
these congruence conditions, but there are some caveats:

The set of primes ` that we can use have to be fixed in advance, and are
not allowed to depend on the order n we want to construct.

Due to the condition ĥ(1) = n that we require, it could happen that
h`(1) ≡ 0 mod ` for all `. In this case, we cannot get the Galois group
to be Sg . We can get Sg−1 and have to do a little bit of extra work.

The degree of the polynomial ĥ(x) can be arbitrarily large, but ` is fixed.
So we cannot impose conditions like h`(x) being completely split, as
there might not be enough element in F` to realise that.
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More conditions

Congruence conditions can also be put to get the following properties:

the isogeny class of A contains a principally polarisable abelian variety,
using a result of Howe;

A has p-rank r(g), where r(g) is a function Z≥0 → Z such that
r(g) ∈ {0, . . . , g} (e.g. to get A is ordinary, we take r(g) = g).

Instead of asking for the order of A(Fq) to be prescribed, we could ask for a
specific group structure for A(Fq). By looking at the action of the
endomorphism algebra, Marseglia and Springer showed the following.

Proposition (Marseglia-Springer)

Every square-free ordinary isogeny class over Fq contains an abelian variety
such that A(Fq) is a cyclic group.

In particular, our method can be used to produce abelian varieties having
cyclic groups. This does not mean that every large enough group will occur
as A(Fq). For example, when q > 10, the group (Z/2Z)2g for g very large
cannot occur, as the structure of the group requires the dimension of A to be
at least g , but the size of the group will contradict the Hasse-Weil bounds.
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Idea for the large q limit

Again write fA(x) = xgR(x + q
x

) for some monic polynomial R(x) ∈ Z[x ]. If

R(x) = xg + c1x
g−1 + . . .+ cn,

then the Hasse-Weil inequalities give us that ci = O(qi/2). On the other
hand, the order of A is

fA(1) = (q + 1)g + c1(q + 1)g−1 + . . .+ cn.

50 100 150 200 250 300
-10

0

10

Idea

If we fix c1, we get an interval Ic1 containing all potential orders that we can
obtain by varying c2, . . . , cn along their allowed ranges. We have:

if c1 is not too close to the extreme values, every order in the interval Ic1

can be realised;

if c1 is close to one of the extreme values, then the intervals Ic1 and Ic1+1

do not overlap, proving that some orders cannot be realised.
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Statement

Theorem (vBCLPS)

Let g ≥ 3 and λ := 2g −
√

2g
g−1

. Then the largest interval in which every

integer is the order of some g -dimensional abelian variety over Fq is of the
shape [

qg − λqg− 1
2 + o(qg− 1

2 ), qg + λqg− 1
2 + o(qg− 1

2 )
]
,

as q →∞ through prime powers.

Remark

For the case of elliptic curves over prime fields, every order in the Hasse-Weil
interval can be realised. That means that the theorem is still true if you take
λ = 2 and q prime. For prime powers, there will be some orders in the
Hasse-Weil interval that cannot be realised. This is caused by polynomials
whose middle coefficient is 0 mod p and are not Weil polynomials.

For the case g = 2, the statement is still true if we either require q to be
prime, or if we take λ = 4− 2

√
2 instead of λ = 2. This is again caused by

polynomials whose middle coefficient is 0 mod p.
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Summary

We discussed:

how to use Honda-Tate theory to construct abelian varieties over Fq;

three methods to construct Weil polynomials: simple, advanced, and
effective method;

how to use congruence conditions to impose geometric simplicity, and
other properties;

some results in the large q-limit.
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