Jordan decomposition and Tannaka duality

Raymond van Bommel, rbommel@math.leidenuniv.nl

These informal talk notes are mostly due to [1] and are prone to errors. I can also recommend sections 2.4 and 2.5 of [2].

1 Jordan decomposition

1.1 Case of finite dimensional vector spaces

Let \(k \) be a perfect field, let \(V \) be a finite dimensional \(k \)-vector space and let \(\alpha : V \to V \) be a \(k \)-automorphism. Then \(\alpha \) is called diagonalizable if \(V \) has a basis of eigenvectors, \(\alpha \) is called semisimple if \(\alpha \otimes K \) is diagonalizable for some field extension \(K/k \), \(\alpha \) is called nilpotent if \(\alpha^m = 0 \) for some \(m \in \mathbb{Z}_{\geq 0} \), and \(\alpha \) is called unipotent if \(\alpha - 1 \) is nilpotent. Let \(E = E(\alpha) \) be the set of eigenvalues of \(\alpha \) in \(k \) and for \(a \in E \) let \(V_a := \{ v \in V : \exists N : (\alpha - a)^N v = 0 \} \) be the associated generalized eigenspace.

Proposition 1. If all eigenvalues of \(\alpha \) lie in \(k \), then

\[
V = \bigoplus_{a \in E} V^a.
\]

Proof. Omitted, see proposition 2.1 of [1, p. 155]. □

Theorem 2 (Jordan decomposition). There exist unique \(k \)-automorphisms \(\alpha_s, \alpha_u : V \to V \) such that \(\alpha_s \) is semisimple, \(\alpha_u \) is unipotent, and \(\alpha = \alpha_s \circ \alpha_u = \alpha_u \circ \alpha_s \).

Proof. First we prove the uniqueness. Suppose that \(\alpha_s \circ \alpha_u \) and \(\beta_s \circ \beta_u \) are two such decomposition, then \(\beta_s^{-1} \circ \alpha_s = \beta_u \circ \alpha_u^{-1} \) is semisimple and nilpotent, hence it is equal to the identity map. This proves the uniqueness.

For the existence first consider the case where all eigenvalues are in \(k \). By proposition 1 we have \(V = \bigoplus_{a \in E} V^a \). Let \(\alpha_s : V \to V \) be such that \(\alpha|_{V^a} \) is the multiplication by \(a \). Now, let \(\alpha_u := \alpha \circ \alpha_s^{-1} \). Then \(\alpha_s \) is semisimple by construction, \(\alpha_u \) is unipotent because all its eigenvalues are 1 and \(\alpha_s \) and \(\alpha_u \) commute. This proves the existence when all eigenvalues are in \(k \).
In the general case the eigenvalues lie in a finite field extension K/k. Because k is perfect, we may and do assume that K/k is finite Galois with Galois group G. Let $\alpha_s \circ \alpha_u$ be the Jordan decomposition of $\alpha \otimes K$. Then it is easy to check that $(\sigma \alpha_s) \circ (\sigma \alpha_u)$ is also a Jordan decomposition for all $\sigma \in G$. Hence, $\sigma \alpha_s = \alpha_s$ and $\sigma \alpha_u = \alpha_u$. Hence α_s and α_u are defined over k and the Jordan decomposition of α is $\alpha_s|_V \circ \alpha_u|_V$.

Lemma 3. Let α and β be k-automorphisms of finite dimensional k-vector spaces V and W. Let $\phi : V \to W$ be a k-morphism. Suppose that $\phi \circ \alpha = \beta \circ \phi$. Then we have $\phi \circ \alpha_s = \beta_s \circ \phi$ and $\phi \circ \alpha_u = \beta_u \circ \phi$.

Proof. It suffices to prove this in the case where all eigenvalues are in k. Let $a \in E(\alpha)$. Then it is easy to check that $\phi(V^a) \subset W^a$. Hence, on V^a the maps $\phi \circ \alpha_s$ and $\beta_s \circ \phi$ agree. The same is true for $\phi \circ \alpha_s^{-1}$ and $\beta_s^{-1} \circ \phi$. Hence by proposition 1 the maps agree on V.

Corollary 4. Let W be a subspace of V, then $\alpha|_W = \alpha_s|_W \circ \alpha_u|_W$ is the Jordan decomposition of $\alpha|_W$.

Lemma 5. Let α and β be k-automorphisms of finite dimensional k-vector spaces V and W. Then $(\alpha \otimes \beta)_s = \alpha_s \otimes \beta_s$ and $(\alpha \otimes \beta)_u = \alpha_u \otimes \beta_u$.

Proof. Similar to the proof of lemma 3, see proposition 2.5 of [1, p. 157].

1.2 Case of infinite dimensional vector spaces

Let k be a perfect field and V an arbitrary k-vector space. A k-automorphism $\alpha : V \to V$ is called *locally finite* if V is a union of finite dimensional α-stable subspaces. The notions of a semisimple, nilpotent and unipotent automorphism extend.

Theorem 6 (Jordan decomposition). *Theorem 2 also holds for arbitrary V and locally finite α.*

Proof. Every α-stable subspace has a unique Jordan decomposition and these coincide by corollary 4.
1.3 Case of algebraic groups

Theorem 7 (Jordan decomposition in algebraic groups). Let G be an affine algebraic group over a perfect field k. For any $g \in G(k)$ there are unique $g_s, g_u \in G(k)$ such that for all (locally finite) representations $r : G \to \text{Aut}(V)$ we have $r(g_s) = r(g)_s$ and $r(g_u) = r(g)_u$. Furthermore $g_s g_u = g_u g_s = g$.

Proof. The theorem follows from Tannaka duality applied to the family $(r(g)_s)_r$ and $(r(g)_u)_r$ where r ranges over all finite dimensional representations. By choosing a faithful representation r we find $r(g) = r(g_s)r(g_u) = r(g_u)r(g_s)$ and hence the desired equality.

2 Tannaka duality

Let G be an affine algebraic group over a field k (in fact we can do this over a noetherian ring k) with coordinate ring A and let R be a k-algebra.

2.1 Statement

Tannaka duality allows us to reconstruct the group G when we only have some limited knowledge about its representations.

Theorem 8 (Tannaka duality). Suppose that for every representation $r_V : G \to \text{Aut}(V)$ which is finitely generated as k-module we have an $\alpha_V : V_R \to V_R$ such that

(a) if V and W are representations, then $\alpha_V \otimes W = \alpha_V \otimes \alpha_W$;
(b) if $\phi : V \to W$ is a homomorphism of G-modules then $\phi_R \circ \alpha_V = \alpha_W \circ \phi_R$;
(c) $\alpha_k = 1$.

Then there exists a unique $g \in G(R)$ such that $\alpha_V = r_V(g)$ for every V.

Proof of theorem 7. The conditions (a), (b) and (c) are satisfied because of lemmas 5 and 3.
2.2 Some lemmas

Let \(\Delta : A \to A \otimes A \) be the comultiplication. Furthermore let \(r_A : G \to \text{End}_A \) be the regular representation, i.e. for every \(k \)-algebra \(R \) we let \(g \in G(R) \) act on \(f \in A \) by

\[
\forall x \in G(R) : (gf)_R(x) = f_R(x \cdot g),
\]

where we consider \(f \in A \) as regular function \(G \to k \). To prove theorem 8 we need the following lemmas.

Lemma 9. Let \(u : A \to A \) be a \(k \)-algebra endomorphism such that \(\Delta \circ u = (1 \otimes u) \circ \Delta \). Then there exists a \(g \in G(k) \) such that \(u = r_A(g) \).

Proof. Let \(\phi : G \to G \) be the morphism corresponding to \(u \). Let \(m : G \times G \to G \) be the multiplication (corresponding to \(\Delta \)). Then we have

\[
\phi_R(x \cdot y) = \phi_R(m_R(x, y)) = m_R(x, \phi_R(y)) = x \cdot \phi_R(y).
\]

By choosing \(y = e \) in (1) we find \(\phi_R(x) = x \cdot g \) where \(g = \phi_R(e) \). Then the correspondence yields us that \(u = r_A(g) \).

Lemma 10. Every representation \(V \) of \(G \) is a union of its finitely generated subrepresentations, or otherwise stated representations of \(G \) are locally finite.

Proof. Already given on 19 February, see proposition 6.6 in [1, p. 121].

Lemma 11. Let \(r_V : G \to \text{Aut}(V) \) be a representation of \(G \) finitely generated as \(k \)-module. Let \(V_0 \) be the underlying \(k \)-module. Then there is an injective \(G \)-morphism \(\rho : V \to V_0 \otimes A \).

Proof. It is easy to check that the coaction \(V_0 \otimes \Delta \) of \(V_0 \otimes A \) commutes with the comultiplication \(\Delta \), hence \(\rho \) is a homomorphism. The injectivity follows from the fact that \((\text{id}_V \otimes \epsilon) \circ \rho \) is injective.

2.3 Proof

Proof of theorem 8. By combining (b) and lemma 10 we can extend our family \((\alpha_V) \) to range over all representations \(V \) instead of only the finitely generated.
Let $A' = A \otimes R$, and let $\alpha' = \alpha_{A'}$ be the R-linear map belong the the regular representation r of G on A'. The multiplication $m : A' \otimes A' \to A'$ is a G-morphism for the representations $r \otimes r$ and r, because for all $x \in G(R)$ and $f \otimes f' \in A' \otimes A'$ we have

\begin{align*}
(r(g) \circ m)(f \otimes f')(x) &= (r(g)(f \cdot f'))(x) = (f \cdot f')(xg) \\
(m \circ (r(g) \otimes r(g)))(f \otimes f')(x) &= ((r(g)f) \cdot (r(g)f'))(x) = f(xg) \cdot f'(xg).
\end{align*}

By (a) and (b) we then get that $m \circ \alpha' = (\alpha' \otimes \alpha') \circ m$, i.e. that α' is a k-algebra morphism. Similarly $\Delta : A' \to A' \times A'$ is a G-morphism for the representation r and $1 \otimes r$. Hence, by (a) and (b) we get $\Delta \circ \alpha' = (1 \otimes \alpha') \circ \Delta$. Now we may apply lemma 9 to G_R to conclude that $\alpha' = r_A(g)$ for some $g \in G(R)$.

Now, we will prove that this g is indeed the G we are looking for. Let $r_V : G \to \text{Aut}(V)$ be a representation of G that is finitely generated as k-module. Let V_0 be the underlying k-module. Then by lemma 11 we have an injective map $\rho : V \to V_0 \otimes A$. By definition of g we know that α and $r(g)$ agree on A and they agree on V_0 by (c). By (a) they then agree on $V_0 \otimes A$ and by (b) they agree on V, which is what we wanted to proof.

The existence of g is proven. The uniqueness can be deduced by noticing that the regular representation is faithful.

References
