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Outline

In Magma the speaker implemented an algorithm to numerically
verify BSD for the Jacobian J of an hyperelliptic curve C/Q of
higher genus, i.e. the algorithm calculates (up to squares)

lims→1(s − 1)−rL(J, s),

the real period PJ ,

the regulator RJ ,

the Tamagawa numbers cp, and

the size of J(Q)tors,

then it uses the BSD formula

lim
s→1

(s − 1)−rL(J, s) =
PJRJ · |X(J)| ·

∏
p cp

|J(Q)tors|2

to predict the size of X(J) (up to squares).
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List of results

The algorithm numerically verified BSD for:

all elliptic curves y2 = x3 + ax + b with a, b ∈ {−15, . . . , 15},
comparing it with existing routines in Magma;

most hyperelliptic curves of genus 2 with low conductor from
the ‘Empirical evidence’ paper (Flynn et al., 2001), comparing
it with the results from this paper;

all 300 hyperelliptics C : y2 = x5 + ax4 + bx3 + cx2 + dx + e
with a, b, c, d , e ∈ {−10, . . . , 10} and ∆(C ) ≤ 105, except for
30 examples;

29 hyperelliptics curves of genus 3 (verification up to squares)
C : y2 = x7 + ax6 + bx5 + cx4 + dx3 + ex2 + fx + g

with a, b, c, d , e, f , g ∈ {−3, . . . , 3} and ∆(C ) ≤ 107.

In all cases, except for the ones already considered by
Flynn et al., the predicted order of X(J) is 1.
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List of exceptions

The algorithm failed for

several examples for which no regular model could be
computed by Magma at some prime p of bad reduction;
(might be resolved partially using the new method)

for genus 3: some examples for which the conductor was big,
which prolongs the calculation of the L-function and period;

the curve x5 − 4x4 + 8x3 − 8x2 + 4x − 1 for which the height
code takes too long to excute;

the curve x5 − 3x4 + 6x3 − 6x2 + 4x − 1 for which the
L-function code takes too long to execute.
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Runtimes

For the following curves

H1: genus 2, rank 0, discriminant 516 (from ‘Empirical’ paper)

H2: genus 2, rank 1, discriminant 62720

H3: genus 3, rank 1, discriminant -1523712

we recorded the following runtimes (in seconds):

H1 H2 H3

lims→1(s − 1)−rL(J, s) 8.930 7.520 173.5

period PJ 36.33 34.34 64.46

regulator Rj 0.930 142.6 294.23

Tamagawa numbers cp 0.040 0.040 0.070

|J(Q)tors| 0.130 0.010 N/A
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How to calculate lims→1(s − 1)−rL(J , s)?

For the algebraic rank:

upper bounds: 2-Selmer groups

lower bounds: point searching

For the L-function and conductor (due to Tim Dokchitser):

most places: point counting to get local factor

other places: guess using the functional equation

Problem: the runtime seems to increase quickly as the conductor
increases.

Possible solution: use the methods of Sutherland.
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How to calculate the regulator RJ?

For the regulator:

find generators for the free part of J(Q)

calculate height pairing (due to Holmes and Müller)

Problem: the bound for the naive height is big. In practice, this
might give rise to an error factor, which is a rational square.

Problem: the higher the genus gets, the harder it is enumerate all
points of bounded height.
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How to calculate the Tamagawa numbers cp?

As seen in Morgan’s course: calculate an explicit regular model
and do the computations there.

The speaker’s main contribution here is a Magma package that
computes the Galois action on the geometric component group
(which is already included in the RegularModel package), and
uses this to compute the Tamagawa numbers.

This has been used to calculate Tamagawa numbers for all but 54
genus 2 curves in the LMFDB.
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How to calculate |J(Q)tors|?

For the torsion:

lower bounds: finding points

upper bounds: counting points on reduction mod p

If the lower and upper bounds do not match, the error induced will
be at worst a rational square.
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How to calculate the real period PJ? (1/5)

For a standard basis dx
y ,

xdx
y , . . . , x

g−1dx
y of the differentials, and for

a symplectic basis γ1, . . . , γ2g of H1(J(C),Z) calculated by Magma,
there is a Magma routine BigPeriodMatrix due to Van Wamelen
that calculates the matrix

M =
(∫

γi
x j−1dx

y

)
i=1,...,2g , j=1,...g

.

The columns of M + M span a lattice inside Rg . The covolume of
this lattice is the real period, up to a certain correction factor.

The differential dx
y ∧ . . . ∧

xg−1dx
y is not a Néron differential in

general. To correct for this, we need to find how far it is away from
being a Néron differential.
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How to calculate the real period PJ? (2/5)

For odd primes of good reduction, it is alright, but for the other
primes p we do the following calculation (cf. Flynn et al.):

1. we calculate a regular model C/Z(p);

2. for each i = 0, . . . , g − 1 and each irreducible component E of
the special fibre CFp , we check if x idx

y has a pole on E and
multiply by p if necessary;

3. for each linear combination D =
∑g−1

i=0 ci
x idx
y , with

ci ∈ {0, . . . , p − 1} not all zero, and each component E of
CFp , we check if D vanishes on E . We adjust the basis, in
case one such D vanishes on the whole special fibre.
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How to calculate the real period PJ? (3/5)

Question: given a differential, regular on C/Q, how to calculate
its order of vanishing on components of the special fibre CFp?

Answer: Classically, for smooth C/Q, there is an isomorphism

Ω1
J/Q(J) ∼= Ω1

C/Q(C ).

Under mild conditions (e.g. C (Q) 6= ∅), this generalises to

Ω1
J /Z(p)

(J ) ∼= ωC/Z(p)
(C),

where J /Z(p) is a Néron model of the Jacobian, and ωC/Z(p)
is the

canonical sheaf. Now our goal is to explicitly find generators of the
Z(p)-module ωC/Z(p)

(C).
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How to calculate the real period PJ? (4/5)

We know that ωC/Z(p)
(C)⊗Z(p)

Q ∼= Ω1
C/Q(C ), but how do we make

this explicit?

Proposition

Let C/Z(p) be an affine curve, given inside An by the equations
f2 = f3 = . . . = fn = 0. Suppose that Cη/Q is smooth and that
τ = g · dx1 is a regular differential on Cη.

Then in the canonical sheaf ωC/Z(p)
, the differential τ corresponds

to a regular differential if and only if

det

(
∂fi
∂xj

)n

i ,j=2

· g

is regular in OC .



Results Other terms Real period Future

How to calculate the real period PJ? (5/5)

This should not be confused with the sheaf of relative differentials.

Example: let p > 2 and C : f := y2 − p(x3 + 1) = 0 and τ = dx
y .

At first sight, it might seem that τ has a pole at the special fibre
p = 0. However, inside the canonical sheaf, τ is

∂f

∂y
· 1

y
= 2

times a generator. As p > 2, this is a unit, and τ does not have a
pole at the special fibre.
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Ideas for the future

In the future, we hope to extend these methods to numerically
verify (possibly up to squares) BSD for some smooth plane
quartics.

Moreover, the algrithm could likely be improved drastically by
using the new algorithm for the regular model by Dokchitser et al.,
and using the new method by Sutherland for the L-function.
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