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These are notes for a talk held at the local Galois representation seminar in
Leiden, The Netherlands, on Tuesday 28 April. The author apologises for all er-
rors, unclarities, omissions of details and other imperfections and encourages the
reader to send them by email to the author: r.van.bommel@math.leidenuniv.nl.
The notes are mainly based on [FoOu].

1 Basic definitions

In this section the main objects and their properties will be defined.

Definition 1 (`-adic representation). Let K be a field and let L/K be a Ga-
lois extension with Galois group G. An `-adic representation of G is a finite
dimensional Q`-vector space equipped with a continuous and linear action of
G. Moreover, if L = Ksep such a representation is called an `-adic Galois
representation.

Example 2. Take any Galois extension with groupG and any finite dimensional
Q`-vector space V and let G act trivially on V , id est, g · v = v.

There are several ways to construct `-adic representations out of existing ones.
Let G be as before and let r be a non-negative integer. Let V and V ′ be
two `-adic representations of G. Then the direct sum V ⊕ V ′, tensor product
V ⊗Q` V

′, the r-th symmetric power Symr
Q`V and the r-th exterior power

∧r
Q` V

naturally carry the structure of an `-adic representation. Moreover, the dual
V ∗ := HomQ`(V,Q`) is an `-adic representation by setting (g ·ϕ)(v) = ϕ(g−1 ·v).

Definition 3 (irreducible/semisimple). A representation is said to be irre-
ducible if it has exactly two subrepresentations and it is said to be semisimple
if it is a direct sum of irreducible representations.

For representations that are not semisimple, there is a way to construct a
semisimple one.

Definition 4 (semisimplification). Let V be a representation over some group
G and let 0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn = V be a Jordan-Hölder decomposition.
Then the semisimplification of V is defined as

⊕n
i=1 Vi/Vi−1.
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2 Examples of `-adic Galois representations

Let K be a field, Ksep a separable closure and G = Gal(Ksep/K). Let ` be a
prime number not equal to the characteristic of K. Now let

µ`n(Ksep) := {x ∈ Ksep : x`
n

= 1}.

They form an inverse system by taking the following maps:

µ`n+1(Ksep)→ µ`n(Ksep) : x 7→ x`.

Definition 5 (Tate module of Gm). The limit of this system is called the Tate
module of Gm or T`(Gm) = Z`(1). It is a free Z`-module of rank 1 by letting
γ = (γn mod `n)n ∈ Z` act on t = (tn)n ∈ T`(Gm) by γ · t = (tγnn )n. It has a
natural action of G on it and

Q`(1) = V`(Gm) := Q` ×Z` T`(Gm)

is an `-adic representation.

Definition 6 (Tate twist). For non-negative integers r we define Q`(r) to be
Symr

Q`(Q`(1)) and Q`(−r) as its dual. For any `-adic representation V we define
its r-th Tate twist, for r ∈ Z, as

V (r) := V ⊗Q` Q`(r).

Now let A be an abelian variety of dimension g over K, i.e., a smooth projective
variety with a group structure (e.g. an elliptic curve). The theory of abelian
varieties, see for example [Mum], tells us that A(Ksep) is an abelian group
and that its `n-torsion is isomorphic to (Z/`nZ)2g and that its pn-torsion is
isomorphic to (Z/pZ)r with 0 6 r 6 g, if p = char(K) 6= 0. As before there
are maps from the `n+1-torsion (resp. pn+1) to the `n-torsion (resp. pn) be
multiplying by ` (resp. p).

Definition 7 (Tate module of A). The limit of this system is called the Tate
module of A or T`(A). It is a free Z`-module of rank 2g (resp. r) equipped with
a natural action of G. We define the `-adic representation

V`(A) := Q` ⊗Z` T`(A).

Another thing we could consider are the cohomology groups, where m ∈ N∪{0},

Hm
ét (AKsep ,Q`) := Q` ⊗Z` lim

n∈N
Hm((AKsep)ét,Z/`nZ).

The theory of abelian varieties tells us that Hm
ét (AKsep ,Q`) is a finite dimen-

sional vector space. There is a natural G-action that makes them into `-adic
representations.

Lemma 8. There is an isomorphism

Hm
ét (AKsep ,Q`) ∼=

m∧
Q`

(V`(A))∗.
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Proof. The theory of abelian varieties ([Mil, Th. 12.1, p. 55]) gives a canonical
isomorphism Hm

ét (AKsep ,Q`) =
∧m

Q` H
1
ét(AKsep ,Q`). Hence, we only have to

consider the case m = 1.

Consider the Kummer exact sequence

1 −→ µ`n −→ Gm
·`
n

−→ Gm −→ 1

of sheaves on AKsep . The associated long exact sequence becomes

(Ksep)∗
·`
n

→ (Ksep)∗ → H1(AKsep ,µ`n)→ H1(AKsep ,Gm)
·`n→ H1(AKsep ,Gm)

As Ksep contains all `n-th powers, the first morphism is surjective. Hence, we
find that

H1(AKsep ,µ`n) = ker(H1(AKsep ,Gm)
·`n→ H1(AKsep ,Gm)) = A∨(Ksep)[`n],

as the torsion part of Pic(A) is contained in A∨ = Pic0(A). The Weil pairing
gives a canonical isomorphism A∨(K)[`n] = Hom(A(K)[`n],µ`n(Ksep)). Now
we can tensor both sides with the G-module Hom(µ`n(Ksep),Z/`nZ) to get

H1(AKsep ,Z/`nZ) = H1(AKsep ,µ`n)⊗Hom(µ`n(Ksep),Z/`nZ)

= Hom(A(K)[`n],Z/`nZ).

By taking the limit we find that H1(AKsep ,Q`) = V`(A)∗.

Remark 9. This construction of `-adic Galois representations for the cohomol-
ogy groups can be generalised if we replace AKsep by a proper smooth variety
over Ksep.

3 `-adic representations of local fields

In this section we will suppose that K is a local field, i.e. K has a discrete
valuation and is complete with respect to it, with a perfect residue field k of
characteristic p /∈ {0, `}. Let O be its ring of integers and m be the maximal
ideal of O. Let Ksep be a separable closure of K and GK = Gal(Ksep/K).

Definition 10 (inertia and wild inertia). Let L/K be a finite Galois extension.
Then L itself is a local field, with ring of integers OL and maximal ideal mL.
The inertia subgroup IL/K of Gal(L/K) is the subgroup of automorphisms that
act trivially on OL/mL. The wild inertia subgroup PL/K of Gal(L/K) is the
subgroup of automorphisms that act trivially on OL/m2

L.

The inertia subgroup IK of GK is the limit of the inertia subgroups IL/K and
the wild inertia subgroup PK of GK is the limit of the wild inertia subgroups
IL/K . The following proposition shows that this definition makes sense.

Proposition 11. Let L/K and M/K be finite Galois extensions satisfying
L ⊂M . Then the image of IM/K and PM/K in Gal(L/K) is IL/K resp. PL/K .
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Proof. Let (OK ,mK), (OL,mL), (OM ,mM ) be the rings of integers of K, L
resp. M . The natural map OL → OM is a local morphism. Hence, it induces an
injection OL/mL ↪→ OM/mM and every σ ∈ IM/K also acts trivially on OL/mL
and σ|L ∈ IL/K .

Let πM ∈M be a uniformiser and let r be the ramification degree of L/M . Then
πrM is a uniformiser of L. Any element σ ∈ PM/K maps πM to πM (1 + m) for
some m ∈ mM . Then σ(πM ) = πrM (1 +m)r. We know that (1 +m)r − 1 ∈ mM ,
hence (1 +m)r − 1 ∈ mM ∩ L = mL. Therefore, σ|L ∈ PL/K .

Let L/K be a finite Galois extension, let π ∈ L be a uniformiser and let λ be
the residue field of L. Let IL/K and PL/K be as in the previous definition. Then
we define a morphism

νL : IL/K/PL/K −→ λ∗ : σPL/K 7−→
(
σ(π)

π

)
.

Lemma 12 ([Ser, prop. 7, p. 67]). The morphism νL is well-defined and does
not depend on the choice of π. Moreover, it induces an injection

IL/K/PL/K → µ(λ) := {x ∈ λ : ∃n ∈ N : xn = 1}.

Proof. First consider another uniformiser π′. Write π′ = π · u for some unit

u ∈ O∗L. Then σ(π′)
π′ = σ(π)

π · σ(u)
u . As σ ∈ IL/K , we have σ(u) = u ∈ λ∗ and

hence, νL does not depend on the choice of π.

Next, let us show that νL is well-defined. Suppose that τ ∈ PL/K , then
στ(π)
π = στ(π)

τ(π) ·
τ(π)
π . Now τ(π) is just another uniformiser, hence(

στ(π)

τ(π)

)
=

(
σ(π)

π

)
.

As τ ∈ PL/K , it acts trivially on O/m2 and hence τ(π) = π ·u for some u which

is 1 mod m, i.e.,
(
τ(π)
π

)
= 1.

The image of νL is a finite subgroup of λ∗. The injectivity is obvious: if σ ∈ IL/K
sends π to π mod m2, then it acts trivially on O/m2.

The following corollary is not as trivial as it looks.

Corollary 13. The group IK/PK is canonically isomorphic to limn→∞ µn(ksep).

This profinite group is isomorphic to Ẑ′(1) :=
∏
q 6=p Zq(1), where q runs over

the primes not equal to p.

Proof. We will construct a morphism η : IK/PK → limn µn(ksep). Suppose
that we have an element (σL)L ∈ IK/PK . Then η((σL)L)n ∈ µn(ksep) will be
defined as follows. Let n′ be the part of n coprime to p. Take your favourite
extension of K with ramification degree n′, say M := K( n′

√
π) and then let

η((σL)L)n be
(
σM (πM )
πM

)
, where πM ∈ OM is a uniformiser. To check that this

does not depend on the choice of an extension, check the compositum and use the
previous lemma. The bijectivity of this map also follows from the lemma.
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Now we define PK,` to be the inverse image of
∏
q 6=p,` Zq(1) ⊂ IK/PK in IK

and GK,` := GK/PK,`.

Proposition 14. Let V be an `-adic Galois representation of GK and let
ρ : GK → GL(V ) be the corresponding morphism. Then ρ(PK,`) is finite.

Proof. Let T ⊂ V be a Z`-lattice stable under GK and generating V . Then the
image ρ(GK) is a closed subgroup of AutZ`(T ) ∼= GLh(Z`). Let Nn ⊂ GLh(Z`)
be the set of elements acting trivial modulo `n for n > 1. Now N1/Nn is a finite
group whose order is a power of ` and N1 = limn→∞N1/Nn is a pro-`-group.
Hence, it is disjoint from ρ(PK,`) as PK,` is prime to `. Hence, ρ(PK,`) injects
into GLh(F`) under the reduction map and it is finite.

Now let us define some more notions.

Definition 15. Let V be an `-adic representation of GK .

• We say that V is unramified or has good reduction if IK acts trivially.

• We say that V has potentially good reduction if ρ(IK) is finite, i.e., if
there exists a finite extension L of K in Ksep such that V as an `-adic
representation of GL is unramified.

• We say that V is semistable is IK acts unipotently, i.e., if the semisimpli-
fication of V has good reduction.

• We say that V is potentially semistable if there exists a finite extension
L of K in Ksep such that V is semistable as a representation of GL, or,
equivalently, if the semisimplification of GK has potentially good reduc-
tion.

The following theorem is needed to prove the main result of this lecture.

Theorem 16 ([FoOu, th. 1.24]). Assume that the group

µ`∞(K(µ`)) = {x ∈ K(µ`) : ∃n ∈ N : x`
n

= 1}

is finite. Then any `-adic representation of GK is potentially semistable. As
µ`∞(k) ∼= µ`∞(K), this is the case if k is finite.

Proof. Let V be any `-adic representation of GK . By proposition 14 we know
that PK,` has finite image. Hence, by extending K if necessary, we may and
will assume that PK,` acts trivially. Now the action of GK on V factors through
GK,`. We have an exact sequence

1 −→ Z`(1) −→ GK,` −→ Gk −→ 1.

Now let t ∈ Z`(1) be a topological generator and consider its action on V . We
choose a finite extension E of Q` such that the characteristic polynomial of t
splits in linear factors. Now let V ′ = E ⊗Q` V and consider it as GK,`-module.
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Let a ∈ E be an eigenvalue of t and let v ∈ V ′ \ 0 be an eigenvector. As Z`(1)
is normal, gtg−1 ∈ Z`(1) and is of the form tχ`(g) for some character function
χ` : GK,` → Z∗` . Now we have

t · g−1(v) = g−1(gtg−1)v = aχ`(g) · g−1v.

Hence, aχ`(g) is also an eigenvalue of t. Now the goal is to prove that χ`(g) can
take infinitely many values and to prove that a is a root of unity.[*1]

1: In the text they
suggest that
Im(χ`) is open as
µ`∞ (K(µ`)) is
finite. I don’t
know why that
would be true. If
somebody knows,
please let me
know.

We have the following inclusion of groups and corresponding diagram of fields:

1 ⊂ PK ⊂ PK,` ⊂ IK ⊂ GK ;

Ksep ⊃ Kwild ⊃ Kwild,` ⊃ Kunr ⊃ K.

As p 6= `, the `n-th roots of unity are all in Kunr. Consider the extension
L = K[X]/(X`n − π) ⊂ Kwild,` for n ∈ N and let α := X ∈ L. Then
g−1α = ζ`n · α for some `n-th root of unity ζ`n ∈ Ksep. As t ∈ IK/PK,` it
acts trivially on ζ`n and tα = ζtn`nα for some (tn) ∈ Z∗` . Hence,

gtg−1α = g(ζtn+1
`n α) = g(ζ`n)tnα.

The condition in the statement, |µ`∞(K(µ`))| <∞, implies that K(µ`∞)/K is
an infinite extension. Hence, gtg−1 takes infinitely many values when we let g
range over GK,`. In particular, χ`(g) takes infinitely many values. Hence, a is
a root of unity and some power tN of t acts unipotently. Hence, some subgroup
of finite index of Z`(1) acts unipotently. In particular, some subgroup of finite
index of IK acts unipotently and the statement follows.

Now we are ready to state and prove the main theorem.

Theorem 17 (Grothendieck’s `-adic monodromy). Let K be a local field. Then
all `-adic representations of GK that we have seen in the previous section (V`(A),
Hm

ét (AKsep ,Q`), . . .) are potentially semistable.

Proof. Let X be projective smooth over K. Then X can be described by finitely
many equations and is defined over some field K0 of finite type over the prime
field of K. Let K1 be the (topological) closure of K0 in K. It is a complete
discrete valuation field with residue field k1 of finite type over Fp.

Now let k2 = kp
−∞

1 be the perfect closure[*2] of k1. Then construct a complete
2: This was wrong
in [FoOu]: he took
the radical closure.
See also [Esn].discrete valuation field K2 in K containing K1 with residue field k2. Then

µ`∞(k2) = µ`∞(k1) is finite. Then the action of GK on V comes from the
action of GK2 and we can use the previous theorem.

Also the contrary is sometimes true.

Theorem 18 ([FoOu, th. 1.26]). Assume k is algebraically closed. Then any
potentially semistable `-adic representation of GK is one of the mentioned ones.

Proof. Omitted.
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