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Isogenies

Definition
An isogeny between two abelian varieties over Q is a morphism
ϕ : A� B such that #kerϕ <∞.

Isogenies are obtained by taking quotients by finite subgroups defined
over Q. Being isogenous is an equivalence relation.

Theorem (Faltings)
The isogeny class of A over Q is finite.

Two abelian varieties in the same isogeny class share many properties,
including
• dimension

• L-function

• Mordell–Weil rank rkZ A(Q)

• endomorphism algebra End(A)⊗Q
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Isogeny classes

Theorem (Faltings)
The isogeny class of A over Q is finite.

Can construct (finite, connected) isogeny graphs:
• vertices: abelian varieties in an isogeny class,

• edges: indecomposable isogenies and labelled by degree.

Questions

• What are the possible isogeny graphs when dim(A) is fixed?

• Can we compute the isogeny graph of a given abelian variety A?
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Elliptic curves over the rationals

We can explore isogeny graphs of elliptic curves over Q at the LMFDB.
• Ignoring degrees, we find 10 non-isomorphic graphs:

Size 1 2 3 4 6 8
Examples 37.a 26.b 11.a 27.a, 20.a, 17.a 14.a, 21.a 15.a, 30.a

• All edge labels, i.e. degrees of indecomposable isogenies, are prime.

• Not all primes ` appear as isogeny degrees: only

` ∈ {2, . . . , 19, 37, 43, 67, 163}.

Lemma
Any isogeny ϕ : E → E′ can be factored as
E [n]−→ E ϕ1−→ E1

ϕ2−→ · · · ϕn−→ En = E′, where deg(ϕi) = `i are primes and ϕi
are defined over Q.

5/28

https://www.lmfdb.org
https://www.lmfdb.org/EllipticCurve/Q/37/a/
https://www.lmfdb.org/EllipticCurve/Q/26/b/
https://www.lmfdb.org/EllipticCurve/Q/11/a/
https://www.lmfdb.org/EllipticCurve/Q/27/a/
https://www.lmfdb.org/EllipticCurve/Q/20/a/
https://www.lmfdb.org/EllipticCurve/Q/17/a/
https://www.lmfdb.org/EllipticCurve/Q/14/a/
https://www.lmfdb.org/EllipticCurve/Q/21/a/
https://www.lmfdb.org/EllipticCurve/Q/15/a/
https://www.lmfdb.org/EllipticCurve/Q/30/a/


Elliptic curves over the rationals

Theorem (Mazur)
If ϕ : E → E′ defined over Q has prime degree `, then
` ∈ {2, . . . , 19, 37, 43, 67, 163}.

Theorem (Kenku)
Any isogeny class of elliptic curves over Q has size at most 8.

Chiloyan, Lozano-Robledo 2021
Complete classification of possible labelled isogeny graphs.

The LMFDB contains examples for all of these graphs.
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Higher dimensions?

Algorithmic problem
Given an abelian surface A (i.e. g = 2) over Q, compute its isogeny class.

In this work, we add two additional assumptions:
• A is principally polarized, i.e. equipped with A ' A∨. True for ECs and
Jacobians.

• A is typical, i.e. End(AQ) = Z.
Then A is the Jacobian of genus 2 curves over Q:

y2 = f (x), deg(f ) = 5 or 6 and f has distinct roots.

The LMFDB contains genus 2 curves with small discriminants, grouped by
isogeny class of their Jacobians, but these isogeny classes are currently
not complete.
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Algorithmic approach

Algorithmic problem
Given an abelian variety A over Q, compute its isogeny class.

For an elliptic curve E/Q:
1. Search for `-isogenies E → E′ for each ` in Mazur’s list. This is a finite
problem.

2. Reapply on E′ as needed.

In general:
1. Classify the possible isogeny types. (E.g., “prime degree” for elliptic
curves.)

2. Compute a finite number of possible degrees. We now face a finite
problem.

3. Search for all isogenies of a given type and degree.

4. Reapply as needed.
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Isogenies and their kernels

ϕ : A→ B isogeny between principally polarized abelian varieties.

A B

A∨ B∨

ϕ

ϕ∨

λB∼∼ λA  µ = λ−1
A ◦ ϕ

∨ ◦ λB ◦ ϕ ∈ End(A).

Recall that End(A) has a positive Rosati involution † defined by
µ† = λ−1

A ◦ µ
∨ ◦ λA.

Theorem (Mumford)
There is a bijection{

ϕ : A→ B
}
←→

{
(µ, K) :

µ ∈ End(A)†, µ > 0
K ⊆ A[µ] maximal isotropic

}
ϕ 7−→

(
λ−1
A ◦ ϕ

∨ ◦ λB ◦ ϕ, kerϕ
)
.

Here “isotropic” means: isotropic w.r.t. the Weil pairing on A[µ].
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Irreducible isogeny types

Assume now that End(A)† = Z. (True in particular if A is typical).

Any ϕ : A→ B satisfies: ker(ϕ) is maximal isotropic in A[n] for some
n ∈ Z≥1.

Up to decomposing ϕ, can assume n = `e is a prime power.

Lemma
Assume e ≥ 3. If K ⊂ A[`e] is maximal isotropic, then `K ∩ A[`e−2] is
maximal isotropic in A[`e−2].

Thus, any isogeny ϕ : A→ B can always be factored as

A = A0
ϕ1−→ A1

ϕ2−→ A2
ϕ3−→ · · · ϕn−→ An = B,

where ker(ϕi) is maximal isotropic in Ai−1[`i] or Ai−1[`
2
i ], for `i prime.
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Classification of isogenies

Let A be typical, principally polarized abelian surface.

Proposition
The isogeny class of A can be enumerated using isogenies ϕ of the
following types:
1. 1-step: K := ker(ϕ) is a maximal isotropic subgroup of A[`], so
K ' (Z/`Z)2,

2. 2-step: K is a maximal isotropic subgroup of A[`2] and
K ' (Z/`Z)2 × Z/`2Z.

These isogenies are of degree `2 and `4 respectively.

Over Qal, every 2-step isogeny decomposes as a sequence of two 1-step
isogenies, in `+ 1 different ways (permuted by Galois).
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Computing isogeny classes

Algorithmic problem
Given a p.p. abelian variety A over a number field k, compute its isogeny
class.

Elliptic curves /Q Typical p.p. abelian surf. /Q
Isogeny types Prime degree 1-step or 2-step X

Possible degrees Mazur’s theorem ?
Search for isogenies
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Serre’s open image theorem

Theorem (Mazur)
If ϕ : E → E′ defined over Q has prime degree `, then
` ∈ {2, . . . , 19, 37, 43, 67, 163}.

No uniform result à la Mazur is known for abelian surfaces. However:

Serre’s open image theorem
If A is a typical abelian surface, then its Galois representation has open
image in GSp4(Ẑ). Thus, A[`] has nontrivial rational subgroups only for
finitely many `’s.

Includes all primes for which 1-step and 2-step isogenies exist. Results of
Lombardo, Zywina give bounds on such `’s (depending on A), but are
impractical.
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Dieulefait’s algorithm

Instead we use:

Algorithm (Dieulefait)1

Input: Conductor of A and a finite list of L-polynomials
Output: Finite superset of primes ` with reducible mod-` Galois
representation.

Example where the only possibilities are isogenies of degree 312:

C : y2 + (x + 1)y = x5 + 23x4 − 48x3 + 85x2 − 69x + 45.

1See also Banwait–Brumer–Kim–Klagsbrun–Mayle–Srinivasan–Vogt (2023).
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Dieulefait’s algorithm explained: 1-dimensional case

For any prime p, the characteristic polynomial Qp ∈ Z[x] of the action of
Frobp on the Tate module T`(A) does not depend on the choice of `, and
we can use it to find primes for which A[`] has a 1-dimensional subspace.

Lemma
Suppose that A[`] has a 1-dimensional Galois invariant subspace. Let N
be the conductor of A, let p 6= ` be a prime number, let d be the largest
integer such that d2 | N, and let f (p) be the order of p ∈ (Z/dZ)?.
Then ` is a divisor of the integer Mp := Resultant(Qp(x), xf (p) − 1).

The proof of this lemma uses character theory. The idea of Dieleufait’s
algorithm is to compute a few integers pMp and compute their common
prime factors. This contains all primes for which A[`] has a 1-dimensional
subspace.
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Computing isogeny classes

Algorithmic problem
Given a p.p. abelian variety A over a number field k, compute its isogeny
class.

Elliptic curves /Q Typical p.p. abelian surf. /Q
Isogeny types Prime degree 1-step or 2-step X

Possible degrees Mazur’s theorem Dieulefait’s algorithm X
Search for isogenies modular polynomials ??
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Modular polynomials

Elliptic curves: usually search for `-isogenies using algebraic equations
for the cover of modular curves X0(`)→ X(1).

E.g., the modular polynomials Φ`(x, y) ∈ Z[x, y] defined by

Φ`(j, j′) = 0⇐⇒ ∃ϕ : Ej −→ Ej′ such that kerϕ ' Z/`Z.

Size grows as Õ(`3), big but manageable (28MB for ` = 163).

Abelian surfaces: Modular polynomials for p.p. abelian surfaces are
impractical.
More variables: Φ`(x1, x2, x3, y) ∈ Q(x1, x2, x3)[y].
Size grows as Õ(`15) (Kieffer, 2022), already� 29GB for ` = 7.

We use complex-analytic methods instead.
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Moduli space of elliptic curves

Let E/C be an elliptic curve. Moduli space: SL2(Z)\H1.

Can choose τ ∈ H1 and an equation E : y2 = x3 − 27c4x − 54c6 such that

E(C) ' C/(Z+ τZ),
dx
2y 7→ 1

2πi dz.

Then c4, c6 are modular forms:

c4 = E4(τ), c6 = E6(τ), hence j(E) = j(τ) = 1728 E4(τ)
E4(τ)3 − E6(τ)2

.

Theorem
The graded C-algebra of modular forms on H1 for SL2(Z) is C[E4, E6].

Moreover E4, E6 have integral, primitive Fourier expansions.
Hence c4, c6 are indeed “the right invariants” to consider.
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Moduli space of p.p. abelian surfaces

A complex p.p. abelian surface takes the form C2/(Z2 + τZ2) with τ ∈ H2:
this means τ is a 2× 2 complex, symmetric matrix such that Im(τ) is
positive definite.
H2 carries an action of GSp4(R)+, analogous to the “usual” action of
GL+

2 (R) on H1. A moduli space of abelian surfaces is Sp4(Z)\H2.

Theorem (Igusa)
The graded C-algebra of (scalar-valued) Siegel modular forms of even
weight on H2 for Sp4(Z) is C[M4,M6,M10,M12], where the Mi are
algebraically independent.

Normalized such that the Mj have primitive, integral Fourier expansions
and M10, M12 are cusp forms.
Explicit relations with the Igusa–Clebsch invariants I2, I4, I6, I10 of a genus 2
curve:

M4 = 2−2I4, M6 = 2−3(I2I4 − 3I6),

M10 = −2−12I10, M12 = 2−15I2I10.

The Mj’s are “the right invariants” on the moduli space of p.p. abelian
surfaces.
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Analytic isogenies

Enumerating isogenous abelian varieties is easy on the complex-analytic
side.

• Elliptic curves: the complex tori `-isogenous to C/(Z+ τZ) are given
by

C/(Z+ 1
`
ητZ)

where η ∈ SL2(Z) are coset representatives for Γ0(`)\SL2(Z).
Note: 1

`
ητ = γτ where γ =

(
1 0
0 `

)
η ∈ GL2(Q)+.

• Abelian surfaces: explicit sets S1(`), S2(`) ⊂ GSp4(Q)+ such that for
i = 1, 2,{
AV i-step `-isogenous to C2/(Z2 + τZ2)

}
=

{
C2/

(
Z2 + γτZ2

)}
γ∈Si(`)

.

Algorithmic problem
Decide when γτ ∈ H2 is attached to an abelian surface defined over Q.
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Sketch of algorithm

Task
Decide which γτ , for γ ∈ S1(`) or S2(`), are period matrices of Jac(C) for
some genus 2 curve C/Q.

We use the following algorithm to solve this problem.

1. Evaluate Siegel modular forms at γτ . This yields C-valued invariants
of the curve C. (Think: the j-invariant of elliptic curves is also an
analytic function.)
Call these invariants N(j, γ) for j ∈ {4, 6, 10, 12}.

2. If C is defined over Q, then N(j, γ) is a rational number, and even an
integer if properly constructed. We can certify this with interval
arithmetic.

3. Given these invariants in Z, reconstruct an equation for C by
“standard methods” (Mestre’s algorithm, computing the correct twist.)
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Construction of algebraic integers

Theorem (corollary of Igusa)
If f is a Siegel modular form of even weight k with integral Fourier
coefficients, then 12kf ∈ Z[M4,M6,M10,M12].

Theorem
Let τ ∈ H2 such that there exists λ ∈ C× with λjMj(τ) ∈ Z for
j ∈ {4, 6, 10, 12}.
If f is a Siegel modular form of even weight k with integral Fourier
coefficients, then ∏

γ∈Si(`)

(
X −

(
12λ`cγ

)kf (γτ)) ∈ Z[X].

Thus, for each j ∈ {4, 6, 10, 12}, the complex numbers

N(j, γ) :=
(
12λ`cγ

)jMj(γτ) for γ ∈ Si(`), i = 1 or 2,

form a Galois-stable set of algebraic integers.
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Algorithm and certification

Input: Invariants m4,m6,m10,m12 ∈ Z of a genus 2 curve, a prime `, and
i ∈ {1, 2}.

Output: Invariants of all i-step `-isogenous abelian surfaces.

1. Compute complex balls that provably contain:
• τ ∈ H2

• λ ∈ C× such that λjMj(τ) = mj for j ∈ {4, 6, 10, 12}
• N(j, γ), for each j ∈ {4, 6, 10, 12} and γ ∈ Si(`).

2. Keep the γ0’s such that N(j, γ0) contains an integer m′
j for

j ∈ {4, 6, 10, 12}.
The m′

j are putative invariants for the abelian surface attached to γ0τ .

3. Confirm that N(j, γ0) = m′
j by certifying the vanishing of∏

γ∈Si(`)

(
N(j, γ)−m′

j
)
∈ Z.

We need to recompute N(j, γ0) (only!) to a much higher precision.
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Example, continued

Let ` = 31, i = 1 and

C : y2 + (x + 1)y = x5 + 23x4 − 48x3 + 85x2 − 69x + 45.

Working at 300 bits of precision, there is only one γ0 ∈ S1(`) such that the
invariants N(j, γ0) for j ∈ {4, 6, 10, 12} could possibly be integers:

N(4, γ0) = α2 · 318972640+ ε with |ε| ≤ 7.8× 10−47,

N(6, γ0) = α3 · 1225361851336+ ε with |ε| ≤ 5.5× 10−39,

N(10, γ0) = α5 · 10241530643525839+ ε with |ε| ≤ 1.6× 10−29,

N(12, γ0) = −α6 · 307105165233242232724+ ε with |ε| ≤ 4.6× 10−22

where α = 22 · 32 · 31.

We certify equality by working at 4 128 800 bits of precision using certified
quasi-linear time algorithms for the evaluation of modular forms
(Kieffer 2022).
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Example, finding the curve

Given
(m′

4,m′
6,m′

10,m′
12) = (318972640, 1225361851336, 10241530643525839, . . .),

find a corresponding curve C′ such that Jac(C) and Jac(C′) are isogenous
over Q.

Mestre’s algorithm yields

y2 = −1624248x6+5412412x5−6032781x4+876836x3−1229044x2−5289572x−1087304,

a quadratic twist by −83761 of the desired curve

C′ : y2+xy = −x5+2573x4+92187x3+2161654285x2+406259311249x+93951289752862.

We reapply the algorithm to C′, and we only find the original curve.

Remarks

• 113 minutes of CPU time for this example

• 90% of the time is spent certifying the results
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LMFDB data

Originally 63 107 typical genus 2 curves in 62 600 isogeny classes.

By computing isogeny classes, we found 21 923 new curves.

Size 1 2 3 4 5 6 7 8 9 10 12 16 18
Count 51 549 2672 6936 420 756 164 40 45 3 2 3 9 1

Observation
A 2-step 2-isogeny (of degree 16) always implies an existence of a second
one.
This explains the 6913 4 and the 756 ./ we found.

The whole computation took 75 hours. Only 3 classes took more than 10
minutes:

• 349.a: 56 min, isogeny of degree 134.

• 353.a: 23 min, isogeny of degree 114.

• 976.a: 19 min, checking that no isogeny of degree 294 exists.
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Upcoming to LMFDB

A new set of 1 743 737 typical genus 2 curves due to Sutherland is soon to
be added to the LMFDB, split in 1 440 894 isogeny classes. We found
600 948 new curves (in 111 CPU days). Counts per size:

1 2 3 4 5 6 7 8 ≥ 9
1 032456 116847 197253 54543 15547 14323 430 5594 3901

We discovered indecomposable isogenies of degree

22 (= Richelot isogenies), 24, 32, 34, 52, 54, 72, 74, 114, 132, 134, 172, 312.

• Size 2: 75% have degree 22, 22% have degree 34, and then 32, 54, 52, 74,
72, . . .

• Size 3: 99% are 4 of degree 24 isogenies.

• Size 4: 98% are >− of Richelot isogenies.

• Size 5: 99.8% are ./ of degree 24 isogenies.

• Size 6: 75% + 15% are two graphs consisting of Richelot isogenies.
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Life, the universe, and everything

Isogeny graph consisting of 42 Richelot isogenous curves (outside our
database):

Preprint: https://arxiv.org/abs/2301.10118

Code and data:
https://github.com/edgarcosta/genus2isogenies
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