Isogeny classes of typical, principally polarized abelian surfaces over \mathbb{Q}

Raymond van Bommel (Massachusetts Institute of Technology) IRMAR, Rennes / Roazhon, 17 November 2023

Joint work with Shiva Chidambaram, Edgar Costa, and Jean Kieffer

These slides can be downloaded at
raymondvanbommel.nl/talks/roazhon.pdf

Isogeny classes of typical, principally polarized abelian surfaces over \mathbb{Q}

Raymond van Bommel (Massachusetts Institute of Technology) IRMAR, Rennes / Roazhon, 17 November 2023

Joint work with Shiva Chidambaram, Edgar Costa, and Jean Kieffer

These slides can be downloaded at
raymondvanbommel.nl/talks/roazhon.pdf

Isogenies

Definition

An isogeny between two abelian varieties over \mathbb{Q} is a morphism $\varphi: A \rightarrow B$ such that $\# \operatorname{ker} \varphi<\infty$.

Isogenies are obtained by taking quotients by finite subgroups defined over \mathbb{Q}. Being isogenous is an equivalence relation.

Theorem (Faltings)

The isogeny class of A over \mathbb{Q} is finite.
Two abelian varieties in the same isogeny class share many properties, including

- dimension
- L-function
- Mordell-Weil rank rkz $A(\mathbb{Q})$
- endomorphism algebra $\operatorname{End}(A) \otimes \mathbb{Q}$

Isogeny classes

Theorem (Faltings)

The isogeny class of A over \mathbb{Q} is finite.
Can construct (finite, connected) isogeny graphs:

- vertices: abelian varieties in an isogeny class,
- edges: indecomposable isogenies and labelled by degree.

Questions

-What are the possible isogeny graphs when $\operatorname{dim}(A)$ is fixed?

- Can we compute the isogeny graph of a given abelian variety A?

Elliptic curves over the rationals

We can explore isogeny graphs of elliptic curves over \mathbb{Q} at the LMFDB.

- Ignoring degrees, we find 10 non-isomorphic graphs:

Size	1	2	3	4	6	8
Examples	37.a	26.b	11.a	27.a, 20.a, 17.a	14.a, 21.a	15.a, 30.a

- All edge labels, i.e. degrees of indecomposable isogenies, are prime.
- Not all primes ℓ appear as isogeny degrees: only

$$
\ell \in\{2, \ldots, 19,37,43,67,163\}
$$

Lemma

Any isogeny $\varphi: E \rightarrow E^{\prime}$ can be factored as
$E \xrightarrow{[n]} E \xrightarrow{\varphi_{1}} E_{1} \xrightarrow{\varphi_{2}} \cdots \xrightarrow{\varphi_{n}} E_{n}=E^{\prime}$, where $\operatorname{deg}\left(\varphi_{i}\right)=\ell_{i}$ are primes and φ_{i} are defined over \mathbb{Q}.

Elliptic curves over the rationals

```
Theorem (Mazur)
If }\varphi:E->\mp@subsup{E}{}{\prime}\mathrm{ defined over }\mathbb{Q}\mathrm{ has prime degree }\ell\mathrm{ , then
\ell\in{2,\ldots,19,37, 43, 67,163}.
```


Theorem (Kenku)

Any isogeny class of elliptic curves over \mathbb{Q} has size at most 8.
Chiloyan, Lozano-Robledo 2021
Complete classification of possible labelled isogeny graphs.
The LMFDB contains examples for all of these graphs.

Higher dimensions?

Algorithmic problem

Given an abelian surface A (i.e. $g=2$) over \mathbb{Q}, compute its isogeny class.
In this work, we add two additional assumptions:

- A is principally polarized, i.e. equipped with $A \simeq A^{V}$. True for ECs and Jacobians.
- A is typical, i.e. $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)=\mathbb{Z}$.

Then A is the Jacobian of genus 2 curves over \mathbb{Q} :

$$
y^{2}=f(x), \quad \operatorname{deg}(f)=5 \text { or } 6 \text { and } f \text { has distinct roots. }
$$

The LMFDB contains genus 2 curves with small discriminants, grouped by isogeny class of their Jacobians, but these isogeny classes are currently not complete.

Algorithmic approach

Algorithmic problem

Given an abelian variety A over \mathbb{Q}, compute its isogeny class.

For an elliptic curve E / \mathbb{Q} :

1. Search for ℓ-isogenies $E \rightarrow E^{\prime}$ for each ℓ in Mazur's list. This is a finite problem.
2. Reapply on E^{\prime} as needed.

In general:

1. Classify the possible isogeny types. (E.g., "prime degree" for elliptic curves.)
2. Compute a finite number of possible degrees. We now face a finite problem.
3. Search for all isogenies of a given type and degree.
4. Reapply as needed.

Isogenies and their kernels

$\varphi: A \rightarrow B$ isogeny between principally polarized abelian varieties.

$$
\begin{aligned}
& A \xrightarrow{\varphi} B \\
& { }^{2} \lambda_{A} \quad \text { i } \lambda_{B} \quad \rightsquigarrow \mu=\lambda_{A}^{-1} \circ \varphi^{\vee} \circ \lambda_{B} \circ \varphi \in \operatorname{End}(A) \text {. } \\
& A^{\vee} \stackrel{\varphi^{\vee}}{B^{\vee}}
\end{aligned}
$$

Recall that $\operatorname{End}(A)$ has a positive Rosati involution \dagger defined by $\mu^{\dagger}=\lambda_{A}^{-1} \circ \mu^{\vee} \circ \lambda_{A}$.

Theorem (Mumford)

There is a bijection

$$
\begin{aligned}
&\{\varphi: A \rightarrow B\} \longleftrightarrow\left\{(\mu, K): \begin{array}{l}
\mu \in \operatorname{End}(A)^{\dagger}, \mu>0 \\
K \subseteq A[\mu] \text { maximal isotropic }
\end{array}\right\} \\
& \varphi \longmapsto\left(\lambda_{A}^{-1} \circ \varphi^{\vee} \circ \lambda_{B} \circ \varphi, \operatorname{ker} \varphi\right) .
\end{aligned}
$$

Here "isotropic" means: isotropic w.r.t. the Weil pairing on $A[\mu]$.

Irreducible isogeny types

Assume now that $\operatorname{End}(A)^{\dagger}=\mathbb{Z}$. (True in particular if A is typical).
Any φ : $A \rightarrow B$ satisfies: $\operatorname{ker}(\varphi)$ is maximal isotropic in $A[n]$ for some $n \in \mathbb{Z}_{\geq 1}$.
Up to decomposing φ, can assume $n=\ell^{e}$ is a prime power.

Lemma

Assume $e \geq 3$. If $K \subset A\left[\ell^{e}\right]$ is maximal isotropic, then $\ell K \cap A\left[\ell^{e-2}\right]$ is maximal isotropic in A[$\left.\ell^{e-2}\right]$.

Thus, any isogeny $\varphi: A \rightarrow B$ can always be factored as

$$
A=A_{0} \xrightarrow{\varphi_{1}} A_{1} \xrightarrow{\varphi_{2}} A_{2} \xrightarrow{\varphi_{3}} \cdots \xrightarrow{\varphi_{n}} A_{n}=B,
$$

where $\operatorname{ker}\left(\varphi_{i}\right)$ is maximal isotropic in $A_{i-1}\left[\ell_{i}\right]$ or $A_{i-1}\left[\ell_{i}^{2}\right]$, for ℓ_{i} prime.

Classification of isogenies

Let A be typical, principally polarized abelian surface.

Proposition

The isogeny class of A can be enumerated using isogenies φ of the following types:

1. 1 -step: $K:=\operatorname{ker}(\varphi)$ is a maximal isotropic subgroup of $A[\ell]$, so $K \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2}$,
2. 2-step: K is a maximal isotropic subgroup of $A\left[\ell^{2}\right]$ and $K \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2} \times \mathbb{Z} / \ell^{2} \mathbb{Z}$.

These isogenies are of degree ℓ^{2} and ℓ^{4} respectively.

Over $\mathbb{Q}^{\text {al }}$, every 2-step isogeny decomposes as a sequence of two 1-step isogenies, in $\ell+1$ different ways (permuted by Galois).

Computing isogeny classes

Algorithmic problem

Given a p.p. abelian variety A over a number field k, compute its isogeny class.

	Elliptic curves $/ \mathbb{Q}$	Typical p.p. abelian surf. $/ \mathbb{Q}$
Isogeny types	Prime degree	1-step or 2-step \checkmark
Possible degrees	Mazur's theorem	?
Search for isogenies		

Serre's open image theorem

```
Theorem (Mazur)
If }\varphi:E->\mp@subsup{E}{}{\prime}\mathrm{ defined over }\mathbb{Q}\mathrm{ has prime degree }\ell\mathrm{ , then
\ell\in{2,\ldots,19,37, 43, 67, 163}.
```

No uniform result à la Mazur is known for abelian surfaces. However:

Serre's open image theorem

If A is a typical abelian surface, then its Galois representation has open image in $\mathrm{GSp}_{4}(\widehat{\mathbb{Z}})$. Thus, $A[\ell]$ has nontrivial rational subgroups only for finitely many ℓ 's.

Includes all primes for which 1-step and 2-step isogenies exist. Results of Lombardo, Zywina give bounds on such ℓ 's (depending on A), but are impractical.

Dieulefait's algorithm

Instead we use:

Algorithm (Dieulefait) ${ }^{1}$

Input: Conductor of A and a finite list of L-polynomials
Output: Finite superset of primes ℓ with reducible mod- ℓ Galois representation.

Example where the only possibilities are isogenies of degree 31^{2} :

$$
C: y^{2}+(x+1) y=x^{5}+23 x^{4}-48 x^{3}+85 x^{2}-69 x+45
$$

[^0]
Dieulefait's algorithm explained: 1-dimensional case

For any prime p, the characteristic polynomial $Q_{p} \in \mathbb{Z}[x]$ of the action of Frob $_{p}$ on the Tate module $T_{\ell}(A)$ does not depend on the choice of ℓ, and we can use it to find primes for which $A[\ell]$ has a 1-dimensional subspace.

Lemma

Suppose that $A[\ell]$ has a 1-dimensional Galois invariant subspace. Let N be the conductor of A, let $p \neq \ell$ be a prime number, let d be the largest integer such that $d^{2} \mid N$, and let $f(p)$ be the order of $p \in(\mathbb{Z} / d \mathbb{Z})^{\star}$. Then ℓ is a divisor of the integer $M_{p}:=\operatorname{Resultant}\left(Q_{p}(x), x^{f(p)}-1\right)$.

The proof of this lemma uses character theory. The idea of Dieleufait's algorithm is to compute a few integers $p M_{p}$ and compute their common prime factors. This contains all primes for which $A[\ell]$ has a 1-dimensional subspace.

Computing isogeny classes

Algorithmic problem

Given a p.p. abelian variety A over a number field k, compute its isogeny class.

	Elliptic curves $/ \mathbb{Q}$	Typical p.p. abelian surf. $/ \mathbb{Q}$
Isogeny types	Prime degree	1-step or 2-step \checkmark
Possible degrees	Mazur's theorem	Dieulefait's algorithm \checkmark
Search for isogenies	modular polynomials	??

Modular polynomials

Elliptic curves: usually search for ℓ-isogenies using algebraic equations for the cover of modular curves $X_{0}(\ell) \rightarrow X(1)$.
E.g., the modular polynomials $\Phi_{\ell}(x, y) \in \mathbb{Z}[x, y]$ defined by

$$
\Phi_{\ell}\left(j, j^{\prime}\right)=0 \Longleftrightarrow \exists \varphi: E_{j} \longrightarrow E_{j^{\prime}} \text { such that } \operatorname{ker} \varphi \simeq \mathbb{Z} / \ell \mathbb{Z} .
$$

Size grows as $\widetilde{O}\left(\ell^{3}\right)$, big but manageable (28 MB for $\ell=163$).

Abelian surfaces: Modular polynomials for p.p. abelian surfaces are impractical.
More variables: $\Phi_{\ell}\left(x_{1}, x_{2}, x_{3}, y\right) \in \mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)[y]$.
Size grows as $\widetilde{O}\left(\ell^{15}\right)$ (Kieffer, 2022), already $\gg 29 \mathrm{~GB}$ for $\ell=7$.
We use complex-analytic methods instead.

Moduli space of elliptic curves

Let E / \mathbb{C} be an elliptic curve. Moduli space: $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}_{1}$.
Can choose $\tau \in \mathbb{H}_{1}$ and an equation $E: y^{2}=x^{3}-27 c_{4} x-54 c_{6}$ such that

$$
\begin{aligned}
& E(\mathbb{C}) \simeq \mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z}) \\
& \frac{d x}{2 y} \mapsto \\
& \frac{1}{2 \pi i} d z
\end{aligned}
$$

Then c_{4}, c_{6} are modular forms:

$$
c_{4}=E_{4}(\tau), \quad c_{6}=E_{6}(\tau), \quad \text { hence } \quad j(E)=j(\tau)=1728 \frac{E_{4}(\tau)}{E_{4}(\tau)^{3}-E_{6}(\tau)^{2}} .
$$

Theorem

The graded \mathbb{C}-algebra of modular forms on \mathbb{H}_{1} for $\mathrm{SL}_{2}(\mathbb{Z})$ is $\mathbb{C}\left[E_{4}, E_{6}\right]$.
Moreover E_{4}, E_{6} have integral, primitive Fourier expansions. Hence c_{4}, c_{6} are indeed "the right invariants" to consider.

Moduli space of p.p. abelian surfaces

A complex p.p. abelian surface takes the form $\mathbb{C}^{2} /\left(\mathbb{Z}^{2}+\tau \mathbb{Z}^{2}\right)$ with $\tau \in \mathbb{H}_{2}$: this means τ is a 2×2 complex, symmetric matrix such that $\operatorname{Im}(\tau)$ is positive definite.
\mathbb{H}_{2} carries an action of $\mathrm{GSp}_{4}(\mathbb{R})^{+}$, analogous to the "usual" action of $\mathrm{GL}_{2}^{+}(\mathbb{R})$ on \mathbb{H}_{1}. A moduli space of abelian surfaces is $\mathrm{Sp}_{4}(\mathbb{Z}) \backslash \mathbb{H}_{2}$.

Theorem (Igusa)

The graded \mathbb{C}-algebra of (scalar-valued) Siegel modular forms of even weight on \mathbb{H}_{2} for $\operatorname{Sp}_{4}(\mathbb{Z})$ is $\mathbb{C}\left[M_{4}, M_{6}, M_{10}, M_{12}\right]$, where the M_{i} are algebraically independent.

Normalized such that the M_{j} have primitive, integral Fourier expansions and M_{10}, M_{12} are cusp forms.
Explicit relations with the Igusa-Clebsch invariants $I_{2}, I_{4}, I_{6}, I_{10}$ of a genus 2 curve:

$$
\begin{array}{ll}
M_{4}=2^{-2} I_{4}, & M_{6}=2^{-3}\left(I_{2} I_{4}-3 I_{6}\right), \\
M_{10}=-2^{-12} I_{10}, & M_{12}=2^{-15} I_{2} I_{10} .
\end{array}
$$

The M_{j} 's are "the right invariants" on the moduli space of p.p. abelian surfaces.

Analytic isogenies

Enumerating isogenous abelian varieties is easy on the complex-analytic side.

- Elliptic curves: the complex tori ℓ-isogenous to $\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$ are given by

$$
\mathbb{C} /\left(\mathbb{Z}+\frac{1}{\ell} \eta \tau \mathbb{Z}\right)
$$

where $\eta \in \mathrm{SL}_{2}(\mathbb{Z})$ are coset representatives for $\Gamma^{0}(\ell) \backslash \mathrm{SL}_{2}(\mathbb{Z})$. Note: $\frac{1}{\ell} \eta \tau=\gamma \tau$ where $\gamma=\left(\begin{array}{ll}1 & 0 \\ 0 & \ell\end{array}\right) \eta \in \mathrm{GL}_{2}(\mathbb{Q})^{+}$.

- Abelian surfaces: explicit sets $S_{1}(\ell), S_{2}(\ell) \subset \operatorname{GSp}_{4}(\mathbb{Q})^{+}$such that for $i=1,2$, $\left\{\right.$ AV i-step ℓ-isogenous to $\left.\mathbb{C}^{2} /\left(\mathbb{Z}^{2}+\tau \mathbb{Z}^{2}\right)\right\}=\left\{\mathbb{C}^{2} /\left(\mathbb{Z}^{2}+\gamma \tau \mathbb{Z}^{2}\right)\right\}_{\gamma \in S_{i}(\ell)}$.

[^1]
Sketch of algorithm

Task

Decide which $\gamma \tau$, for $\gamma \in S_{1}(\ell)$ or $S_{2}(\ell)$, are period matrices of $\operatorname{Jac}(C)$ for some genus 2 curve C / \mathbb{Q}.

We use the following algorithm to solve this problem.

1. Evaluate Siegel modular forms at $\gamma \tau$. This yields \mathbb{C}-valued invariants of the curve C. (Think: the j-invariant of elliptic curves is also an analytic function.)
Call these invariants $N(j, \gamma)$ for $j \in\{4,6,10,12\}$.
2. If C is defined over \mathbb{Q}, then $N(j, \gamma)$ is a rational number, and even an integer if properly constructed. We can certify this with interval arithmetic.
3. Given these invariants in \mathbb{Z}, reconstruct an equation for C by "standard methods" (Mestre's algorithm, computing the correct twist.)

Construction of algebraic integers

Theorem (corollary of Igusa)

If f is a Siegel modular form of even weight k with integral Fourier coefficients, then $12^{k} f \in \mathbb{Z}\left[M_{4}, M_{6}, M_{10}, M_{12}\right]$.

Theorem

Let $\tau \in \mathbb{H}_{2}$ such that there exists $\lambda \in \mathbb{C}^{\times}$with $\lambda^{j} M_{j}(\tau) \in \mathbb{Z}$ for $j \in\{4,6,10,12\}$.
If f is a Siegel modular form of even weight k with integral Fourier coefficients, then

$$
\prod_{\gamma \in S_{i}(\ell)}\left(X-\left(12 \lambda \ell^{C_{\gamma}}\right)^{k} f(\gamma \tau)\right) \in \mathbb{Z}[X] .
$$

Thus, for each $j \in\{4,6,10,12\}$, the complex numbers

$$
N(j, \gamma):=\left(12 \lambda \ell^{c_{\gamma}}\right)^{j} M_{j}(\gamma \tau) \quad \text { for } \gamma \in S_{i}(\ell), i=1 \text { or } 2,
$$

form a Galois-stable set of algebraic integers.

Algorithm and certification

Input: Invariants $m_{4}, m_{6}, m_{10}, m_{12} \in \mathbb{Z}$ of a genus 2 curve, a prime ℓ, and $i \in\{1,2\}$.
Output: Invariants of all i-step ℓ-isogenous abelian surfaces.

1. Compute complex balls that provably contain:

- $\tau \in \mathbb{H}_{2}$
- $\lambda \in \mathbb{C}^{\times}$such that $\lambda^{j} M_{j}(\tau)=m_{j}$ for $j \in\{4,6,10,12\}$
- $N(j, \gamma)$, for each $j \in\{4,6,10,12\}$ and $\gamma \in S_{i}(\ell)$.

2. Keep the γ_{0} 's such that $N\left(j, \gamma_{0}\right)$ contains an integer m_{j}^{\prime} for $j \in\{4,6,10,12\}$.
The m_{j}^{\prime} are putative invariants for the abelian surface attached to $\gamma_{0} \tau$.
3. Confirm that $N\left(j, \gamma_{0}\right)=m_{j}^{\prime}$ by certifying the vanishing of

$$
\prod_{\gamma \in S_{i}(\ell)}\left(N(j, \gamma)-m_{j}^{\prime}\right) \in \mathbb{Z}
$$

We need to recompute $N\left(j, \gamma_{0}\right)$ (only!) to a much higher precision.

Example, continued

Let $\ell=31, i=1$ and

$$
C: y^{2}+(x+1) y=x^{5}+23 x^{4}-48 x^{3}+85 x^{2}-69 x+45
$$

Working at 300 bits of precision, there is only one $\gamma_{0} \in S_{1}(\ell)$ such that the invariants $N\left(j, \gamma_{0}\right)$ for $j \in\{4,6,10,12\}$ could possibly be integers:

$$
\begin{aligned}
N\left(4, \gamma_{0}\right) & =\alpha^{2} \cdot 318972640+\varepsilon \quad \text { with }|\varepsilon| \leq 7.8 \times 10^{-47} \\
N\left(6, \gamma_{0}\right) & =\alpha^{3} \cdot 1225361851336+\varepsilon \quad \text { with }|\varepsilon| \leq 5.5 \times 10^{-39} \\
N\left(10, \gamma_{0}\right) & =\alpha^{5} \cdot 10241530643525839+\varepsilon \quad \text { with }|\varepsilon| \leq 1.6 \times 10^{-29} \\
N\left(12, \gamma_{0}\right) & =-\alpha^{6} \cdot 307105165233242232724+\varepsilon \quad \text { with }|\varepsilon| \leq 4.6 \times 10^{-22}
\end{aligned}
$$

where $\alpha=2^{2} \cdot 3^{2} \cdot 31$.
We certify equality by working at 4128800 bits of precision using certified quasi-linear time algorithms for the evaluation of modular forms (Kieffer 2022).

Example, finding the curve

Given
$\left(m_{4}^{\prime}, m_{6}^{\prime}, m_{10}^{\prime}, m_{12}^{\prime}\right)=(318972640,1225361851336,10241530643525839, \ldots)$, find a corresponding curve C^{\prime} such that $\operatorname{Jac}(C)$ and $\operatorname{Jac}\left(C^{\prime}\right)$ are isogenous over \mathbb{Q}.
Mestre's algorithm yields
$y^{2}=-1624248 x^{6}+5412412 x^{5}-6032781 x^{4}+876836 x^{3}-1229044 x^{2}-5289572 x-1087304$
a quadratic twist by -83761 of the desired curve
$C^{\prime}: y^{2}+x y=-x^{5}+2573 x^{4}+92187 x^{3}+2161654285 x^{2}+406259311249 x+93951289752862$
We reapply the algorithm to C^{\prime}, and we only find the original curve.

Remarks

- 113 minutes of CPU time for this example
- 90% of the time is spent certifying the results

LMFDB data

Originally 63107 typical genus 2 curves in 62600 isogeny classes.
By computing isogeny classes, we found 21923 new curves.

Size	1	2	3	4	5	6	7	8	9	10	12	16	18
Count	51549	2672	6936	420	756	164	40	45	3	2	3	9	1

Observation

A 2-step 2-isogeny (of degree 16) always implies an existence of a second one.
This explains the $6913 \triangle$ and the $756 \bowtie$ we found.
The whole computation took 75 hours. Only 3 classes took more than 10 minutes:

- 349.a: 56 min , isogeny of degree 13^{4}.
- 353.a: 23 min, isogeny of degree 11^{4}.
- 976.a: 19 min , checking that no isogeny of degree 29^{4} exists.

Upcoming to LMFDB

A new set of 1743737 typical genus 2 curves due to Sutherland is soon to be added to the LMFDB, split in 1440894 isogeny classes. We found 600948 new curves (in 111 CPU days). Counts per size:

1	2	3	4	5	6	7	8	≥ 9
1032456	116847	197253	54543	15547	14323	430	5594	3901

We discovered indecomposable isogenies of degree
2^{2} (= Richelot isogenies), $2^{4}, 3^{2}, 3^{4}, 5^{2}, 5^{4}, 7^{2}, 7^{4}, 11^{4}, 13^{2}, 13^{4}, 17^{2}, 31^{2}$.

- Size 2: 75% have degree $2^{2}, 22 \%$ have degree 3^{4}, and then $3^{2}, 5^{4}, 5^{2}, 7^{4}$, $7^{2}, \ldots$
- Size 3: 99% are \triangle of degree 2^{4} isogenies.
- Size 4: 98% are >- of Richelot isogenies.
- Size 5: 99.8% are \bowtie of degree 2^{4} isogenies.
- Size 6: $75 \%+15 \%$ are two graphs consisting of Richelot isogenies.

Life, the universe, and everything

Isogeny graph consisting of 42 Richelot isogenous curves (outside our database):

Preprint: https://arxiv.org/abs/2301.10118
Code and data:
https://github.com/edgarcosta/genus2isogenies

[^0]: ${ }^{1}$ See also Banwait-Brumer-Kim-Klagsbrun-Mayle-Srinivasan-Vogt (2023).

[^1]: Algorithmic problem
 Decide when $\gamma \tau \in \mathbb{H}_{2}$ is attached to an abelian surface defined over \mathbb{Q}.

