Isogeny classes of typical, principally polarized abelian surfaces over $\ensuremath{\mathbb{Q}}$

Raymond van Bommel (Massachusetts Institute of Technology) IRMAR, Rennes / Roazhon, 17 November 2023

Joint work with Shiva Chidambaram, Edgar Costa, and Jean Kieffer

These slides can be downloaded at raymondvanbommel.nl/talks/roazhon.pdf

Isogeny classes of typical, principally polarized abelian surfaces over $\ensuremath{\mathbb{Q}}$

Raymond van Bommel (Massachusetts Institute of Technology) IRMAR, Rennes / Roazhon, 17 November 2023

Joint work with Shiva Chidambaram, Edgar Costa, and Jean Kieffer

These slides can be downloaded at raymondvanbommel.nl/talks/roazhon.pdf

Definition

An isogeny between two abelian varieties over \mathbb{Q} is a morphism $\varphi: A \twoheadrightarrow B$ such that $\# \ker \varphi < \infty$.

Isogenies are obtained by taking quotients by finite subgroups defined over \mathbb{Q} . Being isogenous is an equivalence relation.

Theorem (Faltings)

The isogeny class of A over ${\mathbb Q}$ is finite.

Two abelian varieties in the same isogeny class share many properties, including

 $\boldsymbol{\cdot}$ dimension

· Mordell–Weil rank $\mathsf{rk}_{\mathbb{Z}}\mathsf{A}(\mathbb{Q})$

• *L*-function

 \cdot endomorphism algebra $\mathsf{End}(A)\otimes \mathbb{Q}$

Theorem (Faltings)

The isogeny class of A over \mathbb{Q} is finite.

Can construct (finite, connected) isogeny graphs:

- · vertices: abelian varieties in an isogeny class,
- edges: indecomposable isogenies and labelled by degree.

Questions

- What are the possible isogeny graphs when dim(A) is fixed?
- Can we compute the isogeny graph of a given abelian variety A?

We can explore isogeny graphs of elliptic curves over \mathbb{Q} at the LMFDB.

• Ignoring degrees, we find 10 non-isomorphic graphs:

Size	1	2	3	4	6	8
Examples	37.a	26.b	11.a	27.a, 20.a, 17.a	14.a, 21.a	15.a, 30.a

- All edge labels, i.e. degrees of indecomposable isogenies, are prime.
- · Not all primes ℓ appear as isogeny degrees: only

 $\ell \in \{2, \dots, 19, 37, 43, 67, 163\}.$

Lemma

Any isogeny $\varphi: E \to E'$ can be factored as $E \xrightarrow{[n]} E \xrightarrow{\varphi_1} E_1 \xrightarrow{\varphi_2} \cdots \xrightarrow{\varphi_n} E_n = E'$, where $\deg(\varphi_i) = \ell_i$ are primes and φ_i are defined over \mathbb{Q} .

Theorem (Mazur)

If $\varphi \colon E \to E'$ defined over \mathbb{Q} has prime degree ℓ , then $\ell \in \{2, \dots, 19, 37, 43, 67, 163\}.$

Theorem (Kenku)

Any isogeny class of elliptic curves over $\mathbb Q$ has size at most 8.

Chiloyan, Lozano-Robledo 2021

Complete classification of possible labelled isogeny graphs.

The LMFDB contains examples for all of these graphs.

Algorithmic problem

Given an abelian surface A (i.e. g = 2) over \mathbb{Q} , compute its isogeny class.

In this work, we add two additional assumptions:

- A is principally polarized, i.e. equipped with $A \simeq A^{\vee}$. True for ECs and Jacobians.
- A is typical, i.e. $\operatorname{End}(A_{\overline{\mathbb{Q}}}) = \mathbb{Z}$.

Then A is the Jacobian of genus 2 curves over \mathbb{Q} :

 $y^2 = f(x)$, deg(f) = 5 or 6 and f has distinct roots.

The LMFDB contains genus 2 curves with small discriminants, grouped by isogeny class of their Jacobians, but these isogeny classes are currently not complete.

Algorithmic problem

Given an abelian variety A over \mathbb{Q} , compute its isogeny class.

For an elliptic curve E/\mathbb{Q} :

- 1. Search for ℓ -isogenies $E \to E'$ for each ℓ in Mazur's list. This is a finite problem.
- 2. Reapply on E' as needed.

In general:

- 1. Classify the possible isogeny types. (E.g., "prime degree" for elliptic curves.)
- 2. Compute a finite number of possible degrees. We now face a finite problem.
- 3. Search for all isogenies of a given type and degree.
- 4. Reapply as needed.

 $\varphi: A \rightarrow B$ isogeny between principally polarized abelian varieties.

$$\begin{array}{ccc} A & \xrightarrow{\varphi} & B \\ \downarrow_{\lambda_{A}} & \downarrow_{\lambda_{B}} & \rightsquigarrow & \mu = \lambda_{A}^{-1} \circ \varphi^{\vee} \circ \lambda_{B} \circ \varphi \in \mathsf{End}(A). \\ A^{\vee} & \xleftarrow{\varphi^{\vee}} & B^{\vee} \end{array}$$

Recall that End(A) has a positive Rosati involution \dagger defined by $\mu^{\dagger} = \lambda_A^{-1} \circ \mu^{\vee} \circ \lambda_A$.

Theorem (Mumford)

There is a bijection

$$\begin{cases} \varphi: A \to B \end{cases} \longleftrightarrow \begin{cases} (\mu, K) : \begin{array}{c} \mu \in \operatorname{End}(A)^{\dagger}, \ \mu > 0 \\ K \subseteq A[\mu] \end{array} \\ \varphi \longmapsto \left(\lambda_{A}^{-1} \circ \varphi^{\vee} \circ \lambda_{B} \circ \varphi, \operatorname{ker} \varphi \right). \end{cases}$$

Here "isotropic" means: isotropic w.r.t. the Weil pairing on $A[\mu]$.

Assume now that $End(A)^{\dagger} = \mathbb{Z}$. (True in particular if A is typical).

Any $\varphi : A \to B$ satisfies: $\ker(\varphi)$ is maximal isotropic in A[n] for some $n \in \mathbb{Z}_{\geq 1}$.

Up to decomposing φ , can assume $n = \ell^e$ is a prime power.

Lemma

Assume $e \ge 3$. If $K \subset A[\ell^e]$ is maximal isotropic, then $\ell K \cap A[\ell^{e-2}]$ is maximal isotropic in $A[\ell^{e-2}]$.

Thus, any isogeny $\varphi: A \rightarrow B$ can always be factored as

$$A = A_0 \xrightarrow{\varphi_1} A_1 \xrightarrow{\varphi_2} A_2 \xrightarrow{\varphi_3} \cdots \xrightarrow{\varphi_n} A_n = B,$$

where ker(φ_i) is maximal isotropic in $A_{i-1}[\ell_i]$ or $A_{i-1}[\ell_i^2]$, for ℓ_i prime.

Let A be typical, principally polarized abelian surface.

Proposition

The isogeny class of A can be enumerated using isogenies φ of the following types:

- 1. 1-step: $K := \text{ker}(\varphi)$ is a maximal isotropic subgroup of $A[\ell]$, so $K \simeq (\mathbb{Z}/\ell\mathbb{Z})^2$,
- 2. 2-step: *K* is a maximal isotropic subgroup of $A[\ell^2]$ and $K \simeq (\mathbb{Z}/\ell\mathbb{Z})^2 \times \mathbb{Z}/\ell^2\mathbb{Z}$.

These isogenies are of degree ℓ^2 and ℓ^4 respectively.

Over \mathbb{Q}^{al} , every 2-step isogeny decomposes as a sequence of two 1-step isogenies, in $\ell + 1$ different ways (permuted by Galois).

Algorithmic problem

Given a p.p. abelian variety A over a number field *k*, compute its isogeny class.

	Elliptic curves / \mathbb{Q}	Typical p.p. abelian surf. / $\mathbb Q$
lsogeny types	Prime degree	1-step or 2-step √
Possible degrees	Mazur's theorem	?
Search for isogenies		

Theorem (Mazur)

If $\varphi: E \to E'$ defined over \mathbb{Q} has prime degree ℓ , then $\ell \in \{2, \dots, 19, 37, 43, 67, 163\}.$

No uniform result à la Mazur is known for abelian surfaces. However:

Serre's open image theorem

If A is a typical abelian surface, then its Galois representation has open image in $\operatorname{GSp}_4(\widehat{\mathbb{Z}})$. Thus, $A[\ell]$ has nontrivial rational subgroups only for finitely many ℓ 's.

Includes all primes for which 1-step and 2-step isogenies exist. Results of Lombardo, Zywina give bounds on such ℓ 's (depending on A), but are impractical.

Instead we use:

Algorithm (Dieulefait)¹

Input: Conductor of *A* and a finite list of *L*-polynomials **Output:** Finite superset of primes ℓ with reducible mod- ℓ Galois representation.

Example where the only possibilities are isogenies of degree 31²:

$$C: y^{2} + (x + 1)y = x^{5} + 23x^{4} - 48x^{3} + 85x^{2} - 69x + 45x^{4}$$

¹See also Banwait–Brumer–Kim–Klagsbrun–Mayle–Srinivasan–Vogt (2023).

For any prime p, the characteristic polynomial $Q_p \in \mathbb{Z}[x]$ of the action of Frob_p on the Tate module $T_{\ell}(A)$ does not depend on the choice of ℓ , and we can use it to find primes for which $A[\ell]$ has a 1-dimensional subspace.

Lemma

Suppose that $A[\ell]$ has a 1-dimensional Galois invariant subspace. Let N be the conductor of A, let $p \neq \ell$ be a prime number, let d be the largest integer such that $d^2 \mid N$, and let f(p) be the order of $p \in (\mathbb{Z}/d\mathbb{Z})^*$. Then ℓ is a divisor of the integer $M_p := \text{Resultant}(Q_p(x), x^{f(p)} - 1)$.

The proof of this lemma uses character theory. The idea of Dieleufait's algorithm is to compute a few integers pM_p and compute their common prime factors. This contains all primes for which $A[\ell]$ has a 1-dimensional subspace.

Algorithmic problem

Given a p.p. abelian variety A over a number field k, compute its isogeny class.

	Elliptic curves /ℚ	Typical p.p. abelian surf. / $\mathbb Q$
lsogeny types	Prime degree	1-step or 2-step √
Possible degrees	Mazur's theorem	Dieulefait's algorithm 🗸
Search for isogenies	modular polynomials	??

Elliptic curves: usually search for ℓ -isogenies using algebraic equations for the cover of modular curves $X_0(\ell) \rightarrow X(1)$.

E.g., the modular polynomials $\Phi_{\ell}(x, y) \in \mathbb{Z}[x, y]$ defined by

$$\Phi_{\ell}(j,j') = 0 \iff \exists \varphi : E_j \longrightarrow E_{j'}$$
 such that ker $\varphi \simeq \mathbb{Z}/\ell\mathbb{Z}$.

Size grows as $\tilde{O}(\ell^3)$, big but manageable (28MB for $\ell = 163$).

Abelian surfaces: Modular polynomials for p.p. abelian surfaces are impractical. More variables: $\Phi_{\ell}(x_1, x_2, x_3, y) \in \mathbb{Q}(x_1, x_2, x_3)[y]$. Size grows as $\widetilde{O}(\ell^{15})$ (Kieffer, 2022), already \gg 29 GB for $\ell = 7$.

We use complex-analytic methods instead.

Let E/\mathbb{C} be an elliptic curve. Moduli space: $SL_2(\mathbb{Z})\setminus\mathbb{H}_1$.

Can choose $\tau \in \mathbb{H}_1$ and an equation $E: y^2 = x^3 - 27c_4x - 54c_6$ such that

$$E(\mathbb{C}) \simeq \mathbb{C}/(\mathbb{Z}+\tau\mathbb{Z}), \\ \frac{dx}{2y} \mapsto \frac{1}{2\pi i} dz.$$

Then *c*₄, *c*₆ are modular forms:

$$c_4 = E_4(\tau), \quad c_6 = E_6(\tau), \quad \text{hence} \quad j(E) = j(\tau) = 1728 \frac{E_4(\tau)}{E_4(\tau)^3 - E_6(\tau)^2}.$$

Theorem

The graded \mathbb{C} -algebra of modular forms on \mathbb{H}_1 for $\mathrm{SL}_2(\mathbb{Z})$ is $\mathbb{C}[E_4, E_6]$.

Moreover E_4 , E_6 have integral, primitive Fourier expansions. Hence c_4 , c_6 are indeed "the right invariants" to consider. A complex p.p. abelian surface takes the form $\mathbb{C}^2/(\mathbb{Z}^2 + \tau \mathbb{Z}^2)$ with $\tau \in \mathbb{H}_2$: this means τ is a 2 × 2 complex, symmetric matrix such that $Im(\tau)$ is positive definite.

 \mathbb{H}_2 carries an action of $\mathrm{GSp}_4(\mathbb{R})^+$, analogous to the "usual" action of $\mathrm{GL}_2^+(\mathbb{R})$ on \mathbb{H}_1 . A moduli space of abelian surfaces is $\mathrm{Sp}_4(\mathbb{Z})\backslash\mathbb{H}_2$.

Theorem (Igusa)

The graded \mathbb{C} -algebra of (scalar-valued) Siegel modular forms of even weight on \mathbb{H}_2 for $\operatorname{Sp}_4(\mathbb{Z})$ is $\mathbb{C}[M_4, M_6, M_{10}, M_{12}]$, where the M_i are algebraically independent.

Normalized such that the M_j have primitive, integral Fourier expansions and M_{10} , M_{12} are cusp forms.

Explicit relations with the Igusa–Clebsch invariants I_2 , I_4 , I_6 , I_{10} of a genus 2 curve:

$$\begin{split} M_4 &= 2^{-2} I_4, & M_6 &= 2^{-3} (I_2 I_4 - 3 I_6), \\ M_{10} &= -2^{-12} I_{10}, & M_{12} &= 2^{-15} I_2 I_{10}. \end{split}$$

The *M_i*'s are "the right invariants" on the moduli space of p.p. abelian surfaces.

Enumerating isogenous abelian varieties is easy on the complex-analytic side.

• Elliptic curves: the complex tori ℓ -isogenous to $\mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$ are given by

$$\mathbb{C}/(\mathbb{Z}+\frac{1}{\ell}\eta\tau\mathbb{Z})$$

where $\eta \in \mathrm{SL}_2(\mathbb{Z})$ are coset representatives for $\Gamma^0(\ell) \setminus \mathrm{SL}_2(\mathbb{Z})$. Note: $\frac{1}{\ell} \eta \tau = \gamma \tau$ where $\gamma = \begin{pmatrix} 1 & 0 \\ 0 & \ell \end{pmatrix} \eta \in \mathrm{GL}_2(\mathbb{Q})^+$.

• Abelian surfaces: explicit sets $S_1(\ell)$, $S_2(\ell) \subset GSp_4(\mathbb{Q})^+$ such that for i = 1, 2,

$$\left\{ \mathsf{AV} \text{ } i\text{-step } \ell\text{-isogenous to } \mathbb{C}^2/(\mathbb{Z}^2 + \tau \mathbb{Z}^2) \right\} = \left\{ \mathbb{C}^2/\left(\mathbb{Z}^2 + \gamma \tau \mathbb{Z}^2\right) \right\}_{\gamma \in S_j(\ell)}$$

Algorithmic problem

Decide when $\gamma \tau \in \mathbb{H}_2$ is attached to an abelian surface defined over \mathbb{Q} .

Task

Decide which $\gamma \tau$, for $\gamma \in S_1(\ell)$ or $S_2(\ell)$, are period matrices of Jac(C) for some genus 2 curve C/\mathbb{Q} .

We use the following algorithm to solve this problem.

- 1. Evaluate Siegel modular forms at $\gamma \tau$. This yields \mathbb{C} -valued invariants of the curve *C*. (Think: the *j*-invariant of elliptic curves is also an analytic function.) Call these invariants $N(j, \gamma)$ for $j \in \{4, 6, 10, 12\}$.
- 2. If C is defined over \mathbb{Q} , then $N(j, \gamma)$ is a rational number, and even an integer if properly constructed. We can certify this with interval arithmetic.
- 3. Given these invariants in ℤ, reconstruct an equation for C by "standard methods" (Mestre's algorithm, computing the correct twist.)

Theorem (corollary of Igusa)

If f is a Siegel modular form of even weight k with integral Fourier coefficients, then $12^k f \in \mathbb{Z}[M_4, M_6, M_{10}, M_{12}]$.

Theorem

Let $\tau \in \mathbb{H}_2$ such that there exists $\lambda \in \mathbb{C}^{\times}$ with $\lambda^j M_j(\tau) \in \mathbb{Z}$ for $j \in \{4, 6, 10, 12\}$.

If *f* is a Siegel modular form of even weight *k* with integral Fourier coefficients, then

$$\prod_{\gamma \in S_{i}(\ell)} \left(X - \left(12\lambda \ell^{c_{\gamma}} \right)^{k} f(\gamma \tau) \right) \in \mathbb{Z}[X].$$

Thus, for each $j \in \{4, 6, 10, 12\}$, the complex numbers

$$N(j,\gamma) := (12\lambda \ell^{c_{\gamma}})^{j} M_{j}(\gamma \tau) \quad \text{for } \gamma \in S_{i}(\ell), \ i = 1 \text{ or } 2,$$

form a Galois-stable set of algebraic integers.

Input: Invariants $m_4, m_6, m_{10}, m_{12} \in \mathbb{Z}$ of a genus 2 curve, a prime ℓ , and $i \in \{1, 2\}$.

Output: Invariants of all *i*-step *l*-isogenous abelian surfaces.

- 1. Compute complex balls that provably contain:
 - $\boldsymbol{\cdot} \ \tau \in \mathbb{H}_2$
 - $\lambda \in \mathbb{C}^{\times}$ such that $\lambda^{j}M_{j}(\tau) = m_{j}$ for $j \in \{4, 6, 10, 12\}$
 - $N(j, \gamma)$, for each $j \in \{4, 6, 10, 12\}$ and $\gamma \in S_i(\ell)$.
- 2. Keep the γ_0 's such that $N(j, \gamma_0)$ contains an integer m'_j for $j \in \{4, 6, 10, 12\}$. The m'_i are putative invariants for the abelian surface attached to $\gamma_0 \tau$.
- 3. Confirm that $N(j, \gamma_0) = m'_i$ by certifying the vanishing of

$$\prod_{\gamma \in S_i(\ell)} (N(j,\gamma) - m'_j) \in \mathbb{Z}.$$

We need to recompute $N(j, \gamma_0)$ (only!) to a much higher precision.

Let $\ell = 31$, i = 1 and

$$C: y^{2} + (x + 1)y = x^{5} + 23x^{4} - 48x^{3} + 85x^{2} - 69x + 45.$$

Working at 300 bits of precision, there is only one $\gamma_0 \in S_1(\ell)$ such that the invariants $N(j, \gamma_0)$ for $j \in \{4, 6, 10, 12\}$ could possibly be integers:

$$\begin{split} N(4,\gamma_0) &= \alpha^2 \cdot 318972640 + \varepsilon \quad \text{with } |\varepsilon| \le 7.8 \times 10^{-47}, \\ N(6,\gamma_0) &= \alpha^3 \cdot 1225361851336 + \varepsilon \quad \text{with } |\varepsilon| \le 5.5 \times 10^{-39}, \\ N(10,\gamma_0) &= \alpha^5 \cdot 10241530643525839 + \varepsilon \quad \text{with } |\varepsilon| \le 1.6 \times 10^{-29}, \\ N(12,\gamma_0) &= -\alpha^6 \cdot 307105165233242232724 + \varepsilon \quad \text{with } |\varepsilon| \le 4.6 \times 10^{-22} \end{split}$$

where $\alpha = 2^2 \cdot 3^2 \cdot 31$.

We certify equality by working at 4 128 800 bits of precision using certified quasi-linear time algorithms for the evaluation of modular forms (Kieffer 2022).

Given

 $(m'_4, m'_6, m'_{10}, m'_{12}) = (318972640, 1225361851336, 10241530643525839, ...),$ find a corresponding curve C' such that Jac(C) and Jac(C') are isogenous over \mathbb{Q} .

Mestre's algorithm yields

 $y^2 = -1624248x^6 + 5412412x^5 - 6032781x^4 + 876836x^3 - 1229044x^2 - 5289572x - 1087304x^2 - 5289572x - 52895772x - 528957772x - 5289577$

a quadratic twist by -83761 of the desired curve

 $C': y^2 + xy = -x^5 + 2573x^4 + 92187x^3 + 2161654285x^2 + 406259311249x + 93951289752862x^2 + 406259311249x + 406259310x + 406788x^2 + 4067$

We reapply the algorithm to C', and we only find the original curve.

Remarks

- 113 minutes of CPU time for this example
- 90% of the time is spent certifying the results

Originally 63 107 typical genus 2 curves in 62 600 isogeny classes.

By computing isogeny classes, we found 21923 new curves.

Size	1	2	3	4	5	6	7	8	9	10	12	16	18
Count	51549	2 672	6936	420	756	164	40	45	3	2	3	9	1

Observation

A 2-step 2-isogeny (of degree 16) always implies an existence of a second one.

This explains the 6913 \triangle and the 756 \bowtie we found.

The whole computation took 75 hours. Only 3 classes took more than 10 minutes:

- 349.a: 56 min, isogeny of degree 13⁴.
- 353.a: 23 min, isogeny of degree 11⁴.
- 976.a: 19 min, checking that no isogeny of degree 29⁴ exists.

A new set of 1743737 typical genus 2 curves due to Sutherland is soon to be added to the LMFDB, split in 1440894 isogeny classes. We found 600948 new curves (in 111 CPU days). Counts per size:

We discovered indecomposable isogenies of degree

2² (= Richelot isogenies), 2⁴, 3², 3⁴, 5², 5⁴, 7², 7⁴, 11⁴, 13², 13⁴, 17², 31².

- Size 2: 75% have degree 2², 22% have degree 3⁴, and then 3², 5⁴, 5², 7⁴, 7², . . .
- Size 3: 99% are \triangle of degree 2⁴ isogenies.
- \cdot Size 4: 98% are >- of Richelot isogenies.
- Size 5: 99.8% are \bowtie of degree 2⁴ isogenies.
- Size 6: 75% + 15% are two graphs consisting of Richelot isogenies.

Isogeny graph consisting of 42 Richelot isogenous curves (outside our database):

Preprint: https://arxiv.org/abs/2301.10118

Code and data:

https://github.com/edgarcosta/genus2isogenies