	What is		
0000			

What can you do with a cluster picture? 000000 Cluster pictures in SageMath/LMFDB 0000000000000

Cluster pictures for hyperelliptic curves

Raymond van Bommel

Massachusetts Institute of Technology Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation

These slides can be downloaded at raymondvanbommel.nl/talks/vantage.pdf

Cluster pictures for hyperelliptic curves

Raymond van Bommel

Massachusetts Institute of Technology

Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation

joint with:

Alex J. Best	(Boston University)
L. Alexander Betts	(Max-Planck-Institut für Mathematik)
Matthew Bisatt	(University of Bristol)
Vladimir Dokchitser	(University College London)
Omri Faraggi	(University College London)
Sabrina Kunzweiler	(Universität Ulm)
Céline Maistret	(Boston University)
Adam Morgan	(Max-Planck-Institut für Mathematik)
Simone Muselli	(University of Bristol)
Sarah Nowell	(University College London)

0000	What is a cluster picture? 00	What can you do with a cluster picture?	Cluster pictures in SageMath/LMFDB 000000000000
Acknow	ledgements		

We would like to thank:

- Edgar Costa for technical assistance.
- ICERM for hosting the virtual workshop 'Arithmetic Geometry, Number Theory, and Computation' where this work has been done.
- The numerous organisations that supported the individual members of the group. A full list is in our preprint, [ArXiv:2007.01749].

A USER'S GUIDE TO THE LOCAL ARITHMETIC OF HYPERELLIPTIC CURVES

ALEX J. BEST, L. ALEXANDER BETTS, MATTHEW BISATT, RAYMOND VAN BOMMEL, VLADIMIR DOKCHITSER, OMRI FARAGGI, SABRINA KUNZWEILER, CÉLINE MAISTRET, ADAM MORGAN, SIMONE MUSELLI, SARAH NOWELL

ABSTRACT. A new approach has been recently developed to study the arithmetic of hyperelliptic curves $g^2 = f(x)$ over local fields of odd raidude characteristic via combinatorial data associated to the roots of f. Since its introduction, numerous papers have used this machinery of "cluster pictures" to compute a pichton of anithmetic invariants associated to these curves. The purpose of this user's guide is to summarise and centralise all of these results in a self-contained fashion, complemented by an abundance of examples.

	What is a cluster picture?	What can you do with a cluster picture?	Cluster pictures in SageMath/LMFDB
0000	00	000000	00000000000
Outline			

This talk will consist of three parts:

- What is a cluster picture?
- What can you do with a cluster picture?
- Cluster pictures in SageMath and the LMFDB.

	What is a cluster picture?	What can you do with a cluster picture?	Cluster pictures in SageMath/LMFDB
0000	•0	000000	000000000000
Definit	ions		

In this talk, K is a local field of odd residue characteristic p, e.g. $K = \mathbb{Q}_p$. Let C/K be a hyperelliptic curve of genus g given by the equation

$$y^2 = c \prod_{r \in \mathcal{R}} (x - r),$$
 where $\mathcal{R} \subset \mathcal{K}^{sep}$ is finite.

Definition (cluster, depth)

A non-empty subset of $\mathfrak{s} \subset \mathcal{R}$ is called a *cluster*, if it is of the form $D \cap \mathcal{R}$, where D is some p-adic disc inside K^{sep} . If $|\mathfrak{s}| \ge 2$, then the valuation of the radius of the smallest such disc D, is called the (absolute) *depth* $d_{\mathfrak{s}}$ of \mathfrak{s} .

Definition (parent, child)

If $\mathfrak{c} \subsetneq \mathfrak{p}$ are two clusters, such that there is no cluster \mathfrak{s} with $\mathfrak{c} \subsetneq \mathfrak{s} \subsetneq \mathfrak{p}$, then \mathfrak{p} is the *parent* of \mathfrak{c} , and \mathfrak{c} is a *child* of \mathfrak{p} .

Definition (relative depth)

For a cluster $\mathfrak{s} \subsetneq \mathcal{R}$ with parent \mathfrak{p} , the *relative depth* of \mathfrak{s} is $\delta_{\mathfrak{s}} := d_{\mathfrak{s}} - d_{\mathfrak{p}}$. By convention, we define $\delta_{\mathcal{R}} = d_{\mathcal{R}}$.

What is a cluster picture?	What can you do with a cluster picture?	Cluster pictures in SageMath/LMFDB
00		

Example

Consider C_1 : $y^2 = (x+2)(x-1)(x-2)(x-3)(x^2-27)$ over \mathbb{Q}_3 . It has the following cluster picture:

Here, the red dots depict the individual roots inside $\mathcal R$ and the number written next to each cluster, except for $\mathcal R$, is its relative depth. The number next to the big cluster $\mathcal R$ is the (absolute) depth of the cluster.

From the picture, it is immediately obvious that the Galois group has to fix each cluster of size > 1.

Example

For
$$C_2$$
: $y^2 = 3(x^2 - 2)((x - 3)^2 - 2)((x + 3)^2 - 2)$ over \mathbb{Q}_3 , we get:

Here, Frobenius swaps the two clusters of size 3, but the inertia group acts trivially on the clusters.

	What is a cluster picture?	What can you do with a cluster picture?	Cluster pictures in SageMath/LMFDE
0000	00	00000	000000000000
Reduc	tion types		

Theorem (potential good reduction, [Theorem 5.5])

The curve C has potential good reduction (i.e. it obtains good reduction after an extension of the base field) if and only if there is no cluster \mathfrak{s} such that $1 < |\mathfrak{s}| < 2g + 1$. The Jacobian of C has potential good reduction if and only if every cluster $\mathfrak{s} \neq \mathcal{R}$ has odd cardinality.

Example

Both C_1 and C_2 , and the Jacobian of C_1 do not have potential good reduction, but the Jacobian of C_2 does have potential good reduction, as all the clusters except for \mathcal{R} have size 1 or 3.

We can also determine from the cluster picture:

- whether the curve C has good or semistable reduction,
- whether the Jacobian of C has good or semistable reduction,
- the potential toric rank of the Jacobian J of C (i.e. the dimension of the toric part of J, after a base extension which makes J semi-abelian).

	What is a cluster picture?	What can you do with a cluster picture?	Clus
0000	00	00000	000

Cluster pictures in SageMath/LMFDB 0000000000000

Minimal regular model

Example

Consider C_1 : $y^2 = f(x) = (x+2)(x-1)(x-2)(x-3)(x^2-27)$ over \mathbb{Q}_3 , and consider the cluster $\mathfrak{s} = \{-2, 1\}$ of depth $d_{\mathfrak{s}} = 1$. We then define

$$f_{\mathfrak{s}}(x) = \frac{1}{9}f(3^{d_{\mathfrak{s}}} \cdot x + 1) = \frac{1}{9} \cdot 3x(3x + 3)(3x - 1)(3x - 2)((3x - 1)^2 - 27),$$

where this factor $\frac{1}{9}$ is exactly chosen in such a way to make each of the factors primitive (i.e. the coefficients lie in $\mathcal{O}_{\mathcal{K}}$, but not all in $\mathfrak{m}_{\mathcal{K}}$).

We consider the subscheme of $\mathbb{A}^2_{\mathcal{O}_K}$ given by $y^2 = f_s(x)$. We let \mathcal{U}_s be the open subscheme obtained by removing the points in the special fibre corresponding to double roots of f_s .

We can define such a scheme $\mathcal{U}_{\mathfrak{s}}$ for any cluster \mathfrak{s} . We can glue them to some other schemes $\mathcal{W}_{\mathfrak{s}}$ and $\mathcal{U}_{P,\mathfrak{s}}$ to obtain a regular model of C over \mathcal{O}_{K} , when C is semistable. It is exactly understood which components to blow down to obtain a minimal regular model. The dual graph, and the reduction map to the special fibre can all be expressed in terms of the cluster picture.

	What is a cluster picture?	What can you do with a cluster picture?	Cluster picture
0000	00	000000	0000000

Cluster pictures in SageMath/LMFDB 0000000000000

Conductor

Definition (even/übereven cluster)

A cluster \mathfrak{s} is called *even* if $|\mathfrak{s}|$ is even. Moreover, \mathfrak{s} is called *übereven* if all children of \mathfrak{s} are even.

Theorem (conductor, [Theorem 12.1])

Suppose C/K is semistable. The valuation of the conductor of Jac(C) equals

$$n_{C} = \begin{cases} |A| - 1 & \text{if } \mathcal{R} \text{ is "ubereven,} \\ |A| & \text{otherwise,} \end{cases}$$

where $A = \{even \ clusters \ \mathfrak{s} \neq \mathcal{R} \mid \mathfrak{s} \ is \ not \ "ubereven"\}.$

Example

Consider a curve with the following cluster picture:

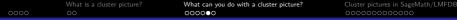
Then A consists of the three clusters of size 2. The cluster of size 4 and \mathcal{R} are both übereven. Hence, the conductor exponent equals |A| - 1 = 2.

	What is a cluster picture?	What can you do with a cluster picture?	Cluster pictures in SageMath/LMFDB
0000	00	000000	00000000000
D'00	12 C 1		

Let $\mathcal{C}/\mathcal{O}_{\mathcal{K}}$ be a regular model. The standard differentials $\omega_i = x^i \frac{dx}{y}$ typically do not give rise to generators for $\omega_{\mathcal{C}/\mathcal{O}_{\mathcal{K}}}(\mathcal{C})$ (i.e. the differentials used in the definition of the period in the BSD formula). However, there does exist a scalar $\frac{\omega^{\circ}}{\omega} \in \mathcal{K}^*$ such that

$$\omega_0^\circ\wedge\cdots\wedge\omega_{g-1}^\circ=rac{\omega^\circ}{\omega}\cdot\omega_0\wedge\cdots\wedge\omega_{g-1}\quad ext{in }\bigwedge^g\Omega^1_{C/K}(\mathcal{C}),$$

where $\omega_0^{\circ}, \ldots, \omega_{g-1}^{\circ}$ is a basis of $\omega_{\mathcal{C}/\mathcal{O}_K}(\mathcal{C})$.


Theorem (differentials, [Theorem 14.6])

Suppose C is semistable. Then

Differentials

$$8 \cdot \operatorname{val}_{\mathcal{K}}\left(\frac{\omega^{\circ}}{\omega}\right) = 4g \cdot \operatorname{val}_{\mathcal{K}}(c) + \sum_{\substack{\mathfrak{s} \\ |\mathfrak{s}| \ is \ even}} \delta_{\mathfrak{s}}(|\mathfrak{s}|-2)|\mathfrak{s}| + \sum_{\substack{\mathfrak{s} \\ |\mathfrak{s}| \ is \ odd}} \delta_{\mathfrak{s}}(|\mathfrak{s}|-1)^{2}.$$

In fact, we can explicitly describe generators for $\omega_{\mathcal{C}/\mathcal{O}_{K}}(\mathcal{C})$ in terms of $\omega_{0}, \ldots, \omega_{g-1}$, and data extracted from the cluster picture of C.

Disriminant and minimal discriminant

Theorem (discriminant and minimal discriminant, [Theorem 15.1/15.2])

The valuation of the discriminant of the defining model for C is

$$\mathrm{val}_{\mathcal{K}}(\Delta_{\mathcal{C}}) = \mathrm{val}_{\mathcal{K}}(c)(4g+2) + \sum_{\mathfrak{s}} \delta_{\mathfrak{s}}|\mathfrak{s}|(|\mathfrak{s}|-1).$$

If C/K is semistable and the residue field of K has more than 2g + 1 elements, then

$$\frac{\mathrm{val}_{\mathcal{K}}(\Delta_{\mathcal{C}})-\mathrm{val}_{\mathcal{K}}(\Delta_{\mathcal{C}}^{\min})}{4g+2}=\mathrm{val}_{\mathcal{K}}(c)-\mathsf{E}+\sum_{\substack{\mathfrak{s}\\|\mathfrak{s}|>g+1}}\delta_{\mathfrak{s}}(|\mathfrak{s}|-g-1),$$

where E = 0 unless there are two clusters of size g + 1 that are swapped by Frobenius and val_K(c) is odd, in which case E = 1.

Example

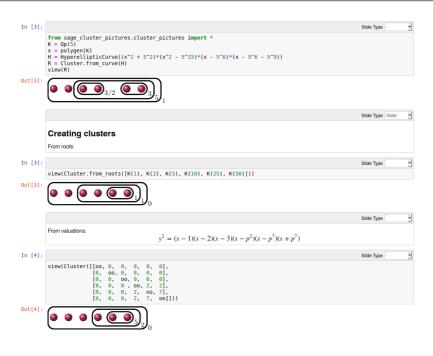
For
$$C_2$$
: $y^2 = 3(x^2 - 2)((x - 3)^2 - 2)((x + 3)^2 - 2)$ of genus 2 over \mathbb{Q}_3 ,

we get $\mathrm{val}_{\mathcal{K}}(\Delta_{\mathcal{C}})=10+0+6+6=22$ and $\mathrm{val}_{\mathcal{K}}(\Delta_{\mathcal{C}}^{\min})=22$ as well.

	What is a cluster picture?	What can you do with a cluster picture?	Cluster pictures in SageMath/LMFDB
		000000	
Other t	things		

Some other things that can be computed using cluster pictures:

- minimal regular strict normal crossings model (tame reduction case),
- Tamagawa numbers (semistable reduction case),
- decomposition of the ℓ -adic Galois representation $H^1_{\text{\'et}}(C/\overline{K}, \mathbb{Q}_{\ell})$ (when ℓ is invertible in the residue field),
- tame and wild part of the conductor exponent in the non-semistable case,
- root numbers, i.e. the sign occurring in the conjectured functional equation for the *L*-function of Jac(C) (tame reduction case),
- different criteria to determine if a model is a minimal Weierstraß model.


000000000000000000000000000000000000000	What is a cluster picture? What can you do wit	cluster picture? Cluster pictures in SageMath/LMFDB
	00 000000	00000000000

Implementation in SageMath

Together with Alex J. Best, I implemented a package for SageMath.

The code can be found at github.com/alexjbest/cluster-pictures.

	What is a cluster picture?	What can you do with a cluster picture?	Cluster pictures in SageMath/LMFDB
0000		000000	00000000000

	What is a cluster picture?	What can you do with a cluster picture?	Cluster pictures in SageMath/LMFDB
0000		000000	00000000000

	Silde Type Silde
	Basic properties
[5]:	Silde Type
	<pre>print(R.children())</pre>
	[Cluster with 4 roots and 2 children, Cluster with 1 roots and θ children, Cluster with 1 roots and θ children]
:	Silde Type
	[unicode_art(D) for D in R.all_descendents()]
	['(((••) 3/2 (••) 3) 5 ••)]', '(••)3/2', '(••)3/2', '(••)3/2', '(••)3/2', '(•)3/2', '
:	Silde Type
	R.is_semistable(K)
]:	True
]:	Silde Type
	<pre>(R.jacobian_has_potentially_good_reduction(), R.potential_toric_rank())</pre>

Out[4]: (False, 2)

0000	What is a cluster picture? OO	What can you do with a cluster picture?	Cluster pictures in SageMath/LMFDB
In [11]: Out[11]:	T = R.BY_tree(); T	tices, 3 yellow edges, 0 blue edges	Silde Type Silde
In [12]:			Slide Type
	T.vertices()		
Out[12]:	[Cluster with 6 roots and 3 childre Cluster with 4 roots and 2 childre Cluster with 2 roots and 2 childre Cluster with 2 roots and 2 childre	in, in,	

	What is a cluster picture?	What can you do with a cluster picture?	Cluster pictures in SageMath/LMFDB
0000		000000	00000000000

		Slide Type	Slide	•
	Via the cluster picture and the homology of the dual graph of the special fibre:			
In [13]:		Slide Type		•
	R.root_number()			
Out[13]:	1			

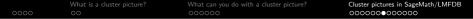
		Slide Type	•
	Via the associated BY-tree:		
In [14]:		Slide Type	•
	R.tamagawa_number()		
Out[14]:	108		

In [15]: Slide Type ۲ T, F = R.BY_tree(with_frob=True)
T.tamagawa_number(F)

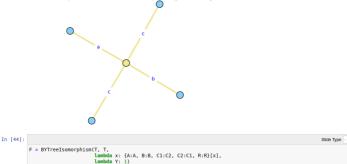
Out[15]: 108

FIGURE 1. The BY tree associated to X_f

In this diagram, the whole graph represents the tree T, while the blue/solid vertices represent the vertices of S (which has no edges in this example) – by contrast, the vertices of T not in S are represented by yellow/open circles and the edges of T not in S are represented by yellow/squiggly lines. The lengths of the edges are indicated by the parameters a, b and c, while the signed automorphism is indicated both with double-headed arrows for the underlying unsigned automorphism of (T, S) (which here has order 2) and with \pm signs next to each connected component¹⁰ of $T \times S$ (so here the sign is \pm).


Since $T \setminus S$ is connected, there is only one term in the formula from theorem 3.0.1, and since $\epsilon(C_i) = +1$ for the unique component C_i , we have $(T'_i, S'_i) = (T, S)$ and $\tilde{c}_{1,i} = 1$. By inspection, $Q_i = 2$ and the quotient tree T''_i , along with its subgraph S''_i , are given by the following diagram

where again the blue/solid vertices indicate the subset $S' \subseteq T'$ and the labels indicate edge-lengths. The removal of any two of the three edges of this graph disconnects the three points of S' from one another, and hence the formula in theorem 3.0.1 provides that the Tamagawa number of X_f is


$$c_{X_f} = 2 \cdot \left(ab + b\frac{c}{2} + \frac{c}{2}a\right) = 2ab + bc + ca$$

Example from a paper by L. Alexander Betts

۰

Out[44]: 2ab + ac + bc

T.tamagawa number(F)

	What is a cluster picture?	What can you do with a cluster picture?	0
0000	00	000000	¢

Cluster pictures in the LMFDB

Cluster pictures have been computed for the following curves in the LMFDB:

- elliptic curves over \mathbb{Q} ,
- elliptic curves over number fields,
- curves of genus 2 over \mathbb{Q} .

For the curves of genus 2, they are already visible on the webpages.

What is a 00	cluster picture? What can you do with a cluster picture?		ictures in SageMath/LM 000000000
LMFDB	∆ → Genus 2 curves → Q → 39690 → a → 277830 → 1 Genus 2 curve 39690.a.277830.1	F	eedback · Hide Menu
Introduction Overview Random	Show commands for: SageMath / Magma Minimal equation	Properties Label	39690.a.277830.1
Universe Knowledge	$y^2 + (x^3 + x)y = x^5 - 5x^3 - 7x^2 + 3x + 15$ (homogenica, simplify)		
Degree 1 Degree 2 Degree 3 Degree 4 ¢ zeros	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		
Modular forms	Igusa-Clebsch invariants	Conductor	39690
Classical Maass Hilbert Bianchi	$I_2 = 2304 = 2^8 \cdot 3^2$ $I_4 = 428472 = 2^3 \cdot 3^2 \cdot 11 \cdot 541$	Discriminant Mordell-Weil grou	277830
Varieties	$I_6 = 241891497 = 3^2 \cdot 26876833$	Sato-Tate group	USp(4)
Elliptic curves over Q	$I_{10} = -1111320 = -2^3 \cdot 3^4 \cdot 5 \cdot 7^3$	$\operatorname{End}(J_{\overline{\mathbb{Q}}}) \otimes \mathbb{R}$ $\operatorname{End}(J_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$	R
Elliptic curves over $\mathbb{Q}(\alpha)$	(Igusa invariants, G2 invariants)	$\operatorname{End}(J) \otimes \mathbb{Q}$	Q
Genus 2 curves over Q Higher genus families	Automorphism group	Q-simple GL ₂ -type	yes no
Abelian varieties over \mathbb{F}_q	$Aut(X) \simeq C_2$	Related objects	
Fields	$\operatorname{Aut}(X_{\overline{\mathbb{Q}}}) \simeq \underline{C_2}$	Isogeny class 39690	0.a
Number fields <i>p</i> -adic fields	Rational points	Twists L-function	
Representations	<u>All points</u> : $(1:0:0), (1:-1:0), (5:20:4), (5:-225:4)$	Learn more abou	ıt
Dirichlet characters	Number of rational Weierstrass points: 0	Completeness of th	e data
Artin representations	This curve is locally solvable everywhere.	Source of the data Reliability of the dat	ta
Groups	Mordell-Weil group of the Jacobian	Genus 2 curve label	
Galois groups Sato-Tate groups	Group structure: z		
	Generator \underline{D}_0 Heig $\overline{D}_0 - (1:-1:0) - (1:0:0) 2x^2 + xz - 7s^2 = 0, 2y = -7xz^2 + 5z^3 0.042$	ht Order	

2-torsion field: 6.2.576108288000.65

BSD invariants

Hasse-Weil conjecture: unverified

000	What is a o	cluster picture? What can you do with a cluster picture?		Cluster pictures in Sage	
	LMFDB	Δ → Genus 2 curves → Q → 39690 → a → 277830 → 1 Genus 2 curve 39690.a.277830.1		Feedback · Hide Me	enu
	Introduction Overview Random Universe Knowledge L-functions Degree 1 Degree 2 Degree 3 Degree 4 zeros Modular forms Classical Maass Hilbert Blanchi Variette Elliptic curves over q Elliptic curves over q Elliptic curves over q Higher genus families Abelian varieties over s ² ,	Show commands for: SageMath / Magma Simplified equation $y^2 = x^6 + 4x^3 + 2x^4 - 20x^3 - 27x^2 + 12x + 60$ (minimize, homogenize) Invariants Conductor: $N = 39690 = 2 \cdot 3^4 \cdot 5 \cdot 7^2$ Discriminant: $\Delta = 277830 = 2 \cdot 3^4 \cdot 5 \cdot 7^3$ Igusa-Clebsch invariants $I_2 = 2304 = 2^8 \cdot 3^2$ $I_4 = 248917 = 2^3 \cdot 3^2 \cdot 11 \cdot 541$ $I_6 = 241891407 = 3^3 \cdot 28878833$ $I_{10} = -1111320 = -2^3 \cdot 3^4 \cdot 5 \cdot 7^3$ (Igusa invariants, G2 invariants) Aut(X_m) $\simeq C_2$ Aut(X_m) $\simeq C_2$	Conduct Discrim Mordell Sato-Tat End(رای ا ت-simple Gl ₂ -type Related	39690.a.2776 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	①
	Fields Number fields <i>p</i> -adic fields	Rational points	Isogeny o Twists L-function	class 39690.a n	
	Representations Dirichlet characters Artin representations	<u>All points</u> : (1:0:0), (1:-1:0), (5:20:4), (5:-225:4) Number of rational <u>Weierstrass points</u> : 0 This curve is <u>locally solvable</u> everywhere.	Complete Source of	nore about eness of the data f the data y of the data	
	Groups Galois groups Sato-Tate groups	Mordell-Weil group of the Jacobian Group structure: 2		curve labels	
		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ght Order 2240 ∞	<u>r</u> -	

Hasse-Weil conjecture: unverified

2-torsion field: 6.2.576108288000.65

BSD invariants

Hasse-Weil conjecture:	unverified
Analytic rank:	1
Mordell-Weil rank:	1
2-Selmer rank:	1
Regulator:	0.042240
Real period:	11.33844
Tamagawa product:	2
Torsion order:	1
Leading coefficient:	0.957883
Analytic order of Ш:	1 (rounded)
Order of Ш:	square

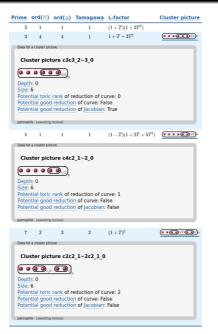
Local invariants

Prime	ord(N)	ord(∆)	Tamagawa	L-factor	Cluster picture
2	1	1	1	$(1+T)(1+2T^2)$	
3	4	4	1	$1+T+3T^2$	0 0 0 0 0 2/3)0
5	1	1	1	$(1-T)(1+2T+5T^2)$	•••••
7	2	3	2	$(1+T)^2$	

Sato-Tate group

 $\begin{array}{rccc} ST &\simeq & USp(4) \\ ST^0 &\simeq & USp(4) \end{array}$

Decomposition of the Jacobian


Simple over Q

Endomorphisms of the Jacobian

Not of GL₂-type over Q

Endomorphism ring over Q:

All on and amorphisms of the Jacobian are defined over o

Cluster pictures for curve 39690.a.277830.1

What is a cluster picture?	What can you do with a cluster picture?	Cluster pictures in SageMath/LMFDB
		00000000000

rime	ord(N)	ord(∆)	Tamagawa	L-factor	Cluster picture
3	4	6	5	1 - T	
Data fo	r a cluster pl	cture			
Clu	ster pic	ture cc2	1~2c1c3_1~	6 1~3 0	
_	ster pre			0_1 0_0	
	$D_{1/2}$	9 9 9 1/	6. al		
Dept	h: 0		0		
Size:					
			eduction of cu		
			n of curve: Fa n of lacobian:		
Poter	itiai goo	u reductio	i or jacobian:	rdise	
permal	ink - (awaitin	g review)			
5	1	1	1	(1 - T)(1 - T + 5T)	2) (******)
Data fo	r a cluster pi	rtura			
Poter Poter	6 ntial torio ntial goo	d reductio d reductio	eduction of cu n of curve: Fa n of Jacobian:	lse	
7	2	2	1	$1+T^2$	
Data fo	r a cluster pi	rture			
Clu	ster pic	ture c2c2	_1~2c2_1~2	2_0	
		2 9 9 1/2)		
-		2 1/2	,		
Dept Size:					
		rank of r	eduction of cu	10/0: 2	
			n of curve: Fa		
	ntial goo	d reductio	n of Jacobian:		
	ntial goo				

Cluster pictures for curve 19845.b.178605.1